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Abstract. The polybenzene units BTX 48, X=A (armchair) and X=Z

(zig-zag) dimerize forming “eclipsed” isomers, the oligomers of which form

structures of five-fold symmetry, called multi-tori. Multi-tori can be de-

signed by appropriate map operations. The genus of multi-tori was calcu-

lated from the number of tetrapodal units they consist. A description, in

terms of Omega polynomial, of the two linearly periodic BTX-networks

was also presented.
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1. Introduction

The polybenzene unit BTA 48 (Figure 1, top, left) was shown [35] to dimer-

ize to three different dimers BTA2 88, BTA2 84 and BTA2 90 , by identifying

the rings R(8) and R(12), respectively. Among these, the “eclipsed” dimer

BTA2 90, shows suitable angles to form a hyper-pentagon (Figure 1, bottom,

left) structures of five-fold symmetry, eventually called multi-tori. The unit

BTZ 24 (Figure 1, top, right) can form only an “eclipsed” dimer BTZ2 48
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which of course can form a hyper-pentagon (Figure 1, bottom, right) and next

multi-tori.

Multi-tori are complex structures consisting of more than one single torus

[4,13,14]. They include negatively curved substructures [24,25,37], termed

schwarzites, in the honor of H. A. Schwarz [29,30], who firstly investigated

the differential geometry of this kind of surfaces. Multi tori can appear as self-

assembly products of some repeating units/monomers, formed by spanning of

cages/fullerenes, as in the case of spongy carbon or in natural zeolites. Multi

tori MT can grow by a linear periodicity or by forming spherical arrays of

various complexity [13]. They can be designed by appropriate map operations

[3,5,11,15,33], as implemented in our original software CVNET [34] and Nano

Studio [27].

The name of multi tori, bearing the benzene patch, will have B as a prefix.

Next, because the opening faces show either “zig-zag” or “armchair” endings,

“Z” or “A” will be added as a suffix to their name, as in BTZ or BTA. The

number of repeating units and/or number of atoms will be added after the

letters.

The design of simple units used to build up multi-tori was made by using

some operations on maps, applied on the Tetrahedron T (see the letter “T” in

the name of these units).

Figure 1. BTA 48 and BTZ 24 units and their corresponding

hyper-pentagons BTXCy5.
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2. Design of Multi Tori

The hyper-ring BTXCy5, (X=A, Z, Figure 1, bottom), can self-arrange to

a spherical multi torus BTX20 (Figure 2, left column), of genus g=21, with a

well-defined core: -f5(Le2,2(Do))=core(BMTA20) 180, while -d5(S2(Ico)=core

(BMTZ20) 120. In the above, -f5 means deletion of all pentagonal faces in the

transformed by Leapfrog (2,2) of the Dodecahedron Do, and d5 is deletion of

vertices of degree d=5, in the transform of Icosahedron=Ico by the septupling

S2 operation. Also, -d5(S2(Ico)=Op(Le(Ico)).

Figure 2. Bottom row: multi torus BTA20 1 780 (left) and

its core 180 (right) designed by -f5(Le2,2(Do)). Top row: multi

torus BTZ20 1 480 (left) and its core 120 (right) designed by

-d5(S 2(Ico).

A linear array of BTX20, with the repeating unit formed by two units super-

imposing one pentagonal hyper-face (i.e., BTXCy5), rotated to each other by

an angle of PI/5 as in the “dimer” BTX20 2 (X=A, Figure 3, left). Next, the

structure can evolve with a one-dimensional periodicity, as shown in BTX20 4

(Figure 3, right).

The number u of tetrahedral units BTX in the linear array of BTX20 k

(Table 1) is u=20k -5(k -1)=15k+5, according to the construction mode. The

term -5(k -1) accounts for the superimposed hyper-rings BTXCy5, k being the

number of units BTX20.
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Figure 3. The repeating unit BTA20 2 1350 (left) and a rod-

like array BTZ20 4 1560 (right).

The number u is also related to the number of faces as: u = f8/6 in case

BTA and u = f6/4in case BTZ (see Table 1).

The genus g of the surface where a structural graph is embedded counts the

number of simple tori consisting that graph [20].

Theorem. [16,36] In multi tori built up from open tetrahedral units, the genus

of structure equals the number of its units plus one, irrespective of the unit

tessellation.

Demonstration comes out from construction: there are five tetrapodal units

to be inserted into exactly five simple tori and all-together are joined to the

central torus (see Figure 1, bottom), thus demonstrating the first part of the

theorem.

For the second part, we apply the Euler’s theorem [18]: v− e+ f = 2(1− g),

where v = |V (G)| is the number of vertices/atoms, e = |E(G)|, the number

of edges/bonds and f is the number of faces of the graph/molecule. Data in

Table 1 provide the values of g in several BTX multi tori, tessellation differing

as X=A or Z, thus completing the demonstration

Table 1. Euler formula calculation in multi tori BTX.
BTX v e f 6 f 8 ftot 2(1-g) g u u-formula

1 BTACy5 210 285 35 30 65 -10 6 5 f8/6

2 BTZCy5 120 165 20 15 35 -10 6 5 f6/4

3 BTA20 1 780 1110 170 120 290 -40 21 20 f8/6

4 BTZ20 1 480 690 80 90 170 -40 21 20 f6/4

5 BTA20 5 3060 4410 710 480 1190 -160 81 80 f8/6

6 BTZ20 5 1920 2790 320 390 710 -160 81 80 f6/4
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3. Omega Polynomial in Linear Multi Tori BTX20 k

In a connected graph G(V,E ), with the vertex set V (G) and edge set E (G), two

edges e = uv and f = xy of G are called codistant e co f if they obey the relation

[22]:

d(v, x) = d(v, y) + 1 = d(u, x) + 1 = d(u, y) (1)

which is reflexive, that is, e co e holds for any edge e of G, and symmetric, if e

co f then f co e. In general, relation co is not transitive; if “co” is also transitive,

thus it is an equivalence relation, then G is called a co-graph and the set of edges

C(e) := {f ∈ E(G); f co e} is called an orthogonal cut oc of G, E (G) being the

union of disjoint orthogonal cuts: E(G) = C1 ∪ C2 ∪ ... ∪ Ck, Ci ∩ Cj = ∅, i �= j.

Klavzar [23] has shown that relation co is a theta Djokovi-Winkler relation [17,39].

We say that edges e and f of a plane graph G are in relation opposite, e op f, if they

are opposite edges of an inner face of G. Note that the relation co is defined in the

whole graph while op is defined only in faces. Using the relation op we can partition

the edge set of G into opposite edge strips, ops. An ops is a quasi-orthogonal cut

qoc, since ops is not transitive.

Let G be a connected graph and S1, S2, ..., Skbe the ops strips of G. Then the ops

strips form a partition of E(G). The length of ops is taken as maximum. It depends

on the size of the maximum fold face/ring Fmax/Rmax considered, so that any result

on Omega polynomial will have this specification.

Denote by m(G,s) the number of ops of length s and define the Omega polynomial

as [1,6-10,12,28,38]:

Ω(G, x) =
∑

s

m(G, s) · xs (2)

Its first derivative (in x=1) equals the number of edges in the graph:

Ω′ (G, 1) =
∑

s

m (G, s) · s = e = |E (G)| (3)

On Omega polynomial, the Cluj-Ilmenau index [26], CI=CI (G), was defined:

CI(G) = {[Ω′(G, 1)]2 − [Ω′(G, 1) + Ω′′(G, 1)]} (4)

Formulas to calculate Omega polynomial and CI index in the two infinite net-

works BTA20k and BTZ20k, designed on the ground of BTA 48 and BTZ 24 units,

are presented in Tables 2 and 3. Formulas were derived from the numerical data

calculated on rods consisting of k units BTX20. Omega polynomial was calculated

at Rmax=R(8); examples are given in view of an easy verification of the general for-

mulas. Formulas for the number of atoms, edges and rings (R6, R8 and R15, the last

one being the simple ring of the hyper-ring BTXCy5), are included in Tables 2 and

3. Note the Omega polynomial description is an alternative to the crystallographic

description.
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Table 2. Formulas for Omega polynomial and net parameters in linear periodic

BTA20 k network.

BMTA20 k Rmax(8);

Ω(BMTA20 k R8) = 10(k + 2)X3 + 5(k − 1)X4 + (11k + 1)X5 + 20(k + 3)X8+

10(k − 1)X10 + 15(k − 1)X12 + (11k + 1)X20 + 10X2(3k+1)

Ω′(1) = 825k + 285 = |E(G)| = edges;

CI(G) = 15(45351k2 + 30715k + 5332);

atoms = 10(57k + 21) = |V (G)|;
R6 = 5(27k + 7); R8 = 30(3k + 1); R15 = 11k + 1;

u48 = 20k − 5(k − 1) = 5(3k + 1) = R8/6;

g = 1 + u48

Examples k=5;

CI=19390230; atoms=3060; edges=4410; R6=710; R8=480; R15=56; u48=80; g=81.

k=6;

CI=27333870; atoms=3630; edges=5235; R6=845; R8=570; R15=67; u48=95; g=96.

Table 3. Formulas for Omega polynomial and net parameters in linear periodic
BTZ20 k network.

BMTZ20 k Rmax(8)

Ω(BMTZ20 k R8) = 10(k + 2)X2 + 30kX3 + (11k + 1)X5 + 10(k + 5)X6+

10(k − 1)X8 + 10(k − 1)X10 + 6kX20

Ω′(1) = 525k + 165 = |E(G)| = edges

CI(G) = 5(55125k2 + 33653k + 5392)

atoms = 120(3k + 1) = |V (G)| = 24u24 = 6R6

R6 = 20(3k + 1) = |V (G)|/6; R8 = 15(5k + 1); R15 = 11k + 1

u24 = 20k − 5(k − 1) = 5(3k + 1) = R6/4;

g = 1 + u24

Examples k=5; 70X2+150X3+56X5+100X6+40X8+40X10+30X20

CI=7758910; atoms=1920; edges=2790; R6= 320; R8=390; R15=56; u24=80; g=81.

k=6; 80X2+180X3+67X5+110X6+50X8+50X10+36X20

CI=10959050; atoms=2280; edges=3315; R6=380; R8=465; R15=67; u24=95; g=96.

4. Conclusions

Polybenzene units BTX 48 was shown to dimerize forming “eclipsed” isomers, the

oligomers of which form structures of five-fold symmetry, called multi-tori.

Multi-tori can grow by a linear periodicity or by forming spherical arrays of various

complexity [2]. They can be designed by appropriate map operations [10-14], as

implemented in the software CVNET [15] and Nano Studio [16] developed at TOPO

Group Cluj. The genus of multi-tori was calculated from the number of tetrapodal

units they consist. A description, in terms of Omega polynomial, of the two linear

BTX-networks was also presented. We mention that in the last years several authors

have published articles dealing with the calculation of various topological indices

[2,21,26,32] and counting polynomials [19,31].
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