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Abstract. In this paper, we study a generalization of z-ideals in the

ring C(X) of continuous real valued functions on a completely regular

Hausdorff space X. The notion of a weak ideal and naturally a weak

z-ideal and a prime weak ideal are introduced and it turns out that they

behave such as z-ideals in C(X).
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1. Introduction

Throughout this paper, C(X) will denote the ring of real continuous func-

tions defined on a completely regular Hausdorff space. As usual, if f ∈ C(X),

its zero set f←(0) and its cozero set X \ f←(0) are denoted by Z(f) and

Coz(f), respectively. Also if S ⊆ C(X), Z[S] = {Z(f) : f ∈ S} and Coz[S] =

{Coz(f) : f ∈ S}. Whenever I is an ideal in C(X), we call I a z-ideal in C(X)

if g ∈ C(X) and Z(g) ∈ Z[I] imply that g ∈ I. The partial ordering on C(X)

is defined by:

f ≤ g if and only if f(x) ≤ g(x) for all x ∈ X .

A proper ideal I of C(X) is called a convex ideal if whenever 0 ≤ f ≤ g, and

g ∈ I, then f ∈ I and it is called an absolutely convex ideal if whenever |f | ≤ |g|,
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and g ∈ I, then f ∈ I. Recall that βX is the Stone-Čech compactification of

X . For undefined terms and notations, the readers are referred to [5, 7, 8, 9].

Let R always denote a commutative ring with identity. A proper ideal I of

R is called a prime ideal of R if for every a, b ∈ R, ab ∈ I implies a ∈ I or b ∈ I.

A prime ideal P in R is called a minimal prime ideal of the ideal I if I ⊆ P

and there is no prime ideal P ′ such that I ⊆ P ′ ⊂ P . Let Min(I) denotes the

set of minimal prime ideals of I in R. An ideal I of R is called an unit ideal of

R if I = R.

We need the following well known facts in the sequel, see [5] and [14].

(1) If P is a prime ideal of C(X), then |⋂Z[P ]| ≤ 1.

(2) Every z-ideal in C(X) is an intersection of prime z-ideals.

(3) Every prime ideal of C(X) is absolutely convex.

(4) If I is a z-ideal in C(X) and P ∈ Min(I), then P is a z-ideal in C(X).

(5) The sum of two z-ideals in C(X) is either a z-ideal or is the unit ideal.

(6) The sum of two prime ideals in C(X) is either a prime ideal or is the

unit ideal.

L. Gilman and C. W. Kohls have remarked [[6], p. 401] that the proofs of

items (5) and (6) seem to depend strongly on properties of βX and David Rudd

has proved both items by an elementary methods, see [14].

It is well known that C(X) with pointwise multiplication operation is a

semigroup. In this paper we study the ideals in semigroup (C(X), .) by similar

tools which are used in the ring C(X).

2. z-weak ideal

The structure of the prime ideals and the z-ideals of C(X) has been the

subject of much investigation (see [1, 2, 10, 11, 12]). In this section we introduce

prime weak ideal and z-weak ideal in C(X).

Definition 2.1. A nonempty subset I of a ring R is called a weak ideal of R

if {ri : r ∈ R&i ∈ I} ⊆ I.

It is easy to see that a nonempty subset I of R is a weak ideal if and only if

I =
⋃

a∈I aR.

Definition 2.2. A proper weak ideal I of C(X) is called a z-weak ideal if

Z(f) ∈ Z[I] implies that f ∈ I.

It is obvious that the intersection (or union) of an arbitrary (non empty)

family of z-weak ideals of C(X) is a z-weak ideal of C(X).

Definition 2.3. A proper weak ideal I of C(X) is called a C-weak ideal if for

every Z1, Z2 ∈ Z[I], we have Z1 ∩ Z2 ∈ Z[I], i.e., Z[I] is closed under finite

intersection.
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Example 2.4. Let f, g ∈ C(X) such that Z(f) = Z(g) �= ∅, f �∈ gC(X), and

g �∈ fC(X). We have I = fC(X)∪ gC(X) is a C-weak ideal of C(X), but it is

not an ideal of C(X) (see [[4], Example 1]).

It is clear that for a z-weak ideal I of C(X), I is an ideal of C(X) if and

only if I is a C-weak ideal of C(X).

For every f ∈ C(X), we put Mf = {g ∈ C(X) : Z(f) ⊆ Z(g)} and this

notation is first used in [2].

Proposition 2.5. Every z-weak ideal of C(X) is a union of z-ideals of C(X).

Proof. Let I be a z-weak ideal of C(X). Clearly, for every f ∈ I, Mf is a

z-ideal of C(X) and I =
⋃

f∈I Mf . �

Definition 2.6. A proper weak ideal I of C(X) is called a convex weak ideal

if whenever 0 ≤ f ≤ g, and g ∈ I, then f ∈ I and it is called an absolutely

convex weak ideal if whenever |f | ≤ |g|, and g ∈ I, then f ∈ I.

Trivially, an absolutely convex weak ideal of C(X) is convex weak ideal, but

the converse is not true. Furthermore, it is clear that every z-weak ideal of

C(X) is an absolutely convex weak ideal.

A space X is called F -space if each finitely generated ideal of C(X) is a

principal ideal. It is well known (see [[5], Theorem 14.25]) that X is an F -

space if and only if every ideal of C(X) is a convex ideal.

Proposition 2.7. The following statements are equivalent:

(1) X is an F -space.

(2) Every weak ideal of C(X) is a convex ideal.

(3) Every C-weak ideal of C(X) is a convex ideal.

Proof. It is clear. �

Definition 2.8. A proper weak ideal I of R is called a prime weak ideal if for

every a, b ∈ R, ab ∈ I implies a ∈ I or b ∈ I.

Remark 2.9. We recall that a nonempty subset S of a ring R is multiplicative

provided that precisely s1, s2 ∈ S implies s1s2 ∈ S. If S is a multiplicative

subset of R which is disjoint from a weak ideal I of R, then

S = {Q ⊆ R : Q ∩ S = ∅& I ⊆ Q& Q is a proper weak ideal of R }
is partially ordered by inclusion. By Zorn’s Lemma, there is a weak ideal P of

R which is maximal in S. Furthermore any such weak ideal P is prime weak

ideal of R.

Proposition 2.10. Every prime weak ideal of R is a union of prime ideals of

R.
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Proof. Let Q be a prime weak ideal of R. If f ∈ Q, then fR ∩ (R \ Q) = ∅
and R \ Q is a multiplicative subset of R. By Theorem 2.2, in [8], there is a

prime ideal Pf (in ring of R) disjoint from R \Q that contains fR and hence

fR ⊆ Pf ⊆ Q. Thus Q =
⋃

f∈Q Pf , whence Q is a union of prime ideals of

R. �

Corollary 2.11. If P is a prime weak ideal of C(X), then |⋂Z[P ]| ≤ 1.

Proof. By Proposition 2.10, there exists a prime ideal P ′ of C(X) such that

P ′ ⊆ P and hence |⋂Z[P ]| ≤ |⋂Z[P ′]| ≤ 1 (see [5]). �

By Theorem 5.5 in [5], every prime ideal P of C(X) is absolutely convex

ideal. Therefore the union of prime ideals of C(X) is an absolutely convex

weak ideal. So it is evident that:

Corollary 2.12. Every prime weak ideal P of C(X) is absolutely convex weak

ideal.

Example 2.13. It is well known that, the prime ideals in C(X) containing a

given prime ideal form a chain (see [5] and [14]). Let X = R, I = M2 ∪M3,

P = M2 ∪M3 ∪M4, and Q = M2 ∪M3 ∪M5. Clearly, I, P and Q are prime

weak ideals of C(X) and I ⊆ P , I ⊆ Q, but P , Q are primes which are not in

a chain.

Corollary 2.14. Let I be a prime weak ideal of C(X) and let P and Q be

prime ideals of C(X). If I ⊆ P and I ⊆ Q, then either P ⊆ Q or Q ⊆ P .

Proof. By Proposition 2.10, there exists a prime ideal P ′ of C(X) such that

P ′ ⊆ I and hence either P ⊆ Q or Q ⊆ P (see [[5], 14.3(c)]). �

Remark 2.15. Let I be a weak ideal of R. The radical (or nilradical) of I,

denoted by RadI, is the weak ideal
⋂
P , where the intersection is taken over

all prime weak ideals P of R containing I. If the set of prime weak ideals of

R containing I is empty, then RadI is defined to be R. Also RadI = {r ∈ R :

rn ∈ I for some n ∈ N}.
Proposition 2.16. Every z-weak ideal of C(X) is an intersection of prime

weak ideals of C(X).

Proof. For every n ∈ N and f ∈ C(X), Z(fn) = Z(f). Hence if I is any z-weak

ideal of C(X), then fn ∈ I implies f ∈ I. Hence by Remark 2.15, I = RadI is

the intersection of all prime weak ideals of C(X) containing I. �

3. sum of two z-ideals and sum of two prime ideals

This section is devoted to the study of the smallest z-weak ideal of C(X)

containing a given weak ideal of C(X) and the greatest z-weak ideal of C(X)

contained in a given weak ideal of C(X). We show that the sum of two z-weak
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ideals (prime weak ideals) of C(X) is either a z-weak ideal (a prime weak ideal)

or is the unit ideal.

It is evident that if I is z-weak ideal (or prime weak ideal) of C(X) then for

every f, g ∈ C(X), f2 + g2 ∈ I implies that f, g ∈ I.

If A and B are subsets of C(X), we put A+B = {f + g : f ∈ A& g ∈ B}.
Theorem 3.1. The sum of two z-weak ideals of C(X) is either a z-weak ideal

or is the unit ideal.

Proof. Let I and J be z-weak ideals of C(X). By Proposition 2.5, I =
⋃

λ∈Λ Iλ
and J =

⋃
γ∈Γ Jγ , where for every λ ∈ Λ and γ ∈ Γ, Iλ and Jγ are z-ideal of

C(X). Since the sum of two z-ideals in C(X) is either a z-ideal or is the unit

ideal and I + J =
⋃

λ∈Λ&γ∈Γ(Iλ + Jγ), I + J is either a z-weak ideal or is the

unit ideal. �

For every ideal I in C(X), it is well known that the smallest ideal containing

I is Z←[Z[I]] = {f ∈ C(X) : Z(f) ∈ Z[I]} which is in fact the intersection of

all z-ideals containing I and it is also denoted by Iz in [10]. In the notation of

Mason in the same reference, for a given ideal I in C(X), the largest z-ideal

contained in I is also represented by Iz which is in fact the sum of all z-ideals

contained in I. Topological and algebraic characterizations of Iz and Iz are

given in [2] by Iz = {g ∈ C(X) : Z(f) ⊆ Z(g) for some f ∈ I} and Iz = {f ∈
C(X) : Mf ⊆ I} respectively. Using these notations and characterizations, for

a given proper weak ideal I in C(X), we let:

Izw = {g ∈ C(X) : Z(f) ⊆ Z(g) for some f ∈ I},
and

Izw = {f ∈ C(X) : Mf ⊆ I}.
Thus Izw is the smallest z-weak ideal of C(X) containing I and also Izw is the

greatest z-weak ideal of C(X) contained in I.

We can now give some characterizations and some properties of the smallest

(greatest) z-weak ideal in C(X) containing (contained in) I, for a weak ideal

I of C(X).

Remark 3.2. Clearly, if I and J are proper weak ideals of C(X), then

(1) For every f, g ∈ C(X), Mg ⊆ Mf if and only if Z(f) ⊆ Z(g).

(2) Izw =
⋃

f∈I Mf and Izw =
⋃
Mf⊆I Mf .

(3) I is a z-weak ideal if and only if I = Izw if and only if I = Izw.

(4) I is a z-weak ideal if and only if for every f ∈ I and g ∈ C(X),

Mg ⊆ Mf implies g ∈ I.

(5) If n ∈ N and In is a z-ideal of C(X), then I is a z-ideal of C(X) and

In = I.

(6) For every n ∈ N, (In)zw = Izw and (In)zw = Izw.

(7) If I ⊆ J , then Izw ⊆ Jzw and Izw ⊆ Jzw.
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(8) (I ∩ J)zw = Izw ∩ Jzw and (I ∩ J)zw = Izw ∩ Jzw.

(9) (I ∪ J)zw = Izw ∪ Jzw.

(10) If I + J is proper weak ideal of C(X), then Izw + Jzw ⊆ (I + J)zw and

Izw + Jzw = (I + J)zw.

(11) If Izw + Jzw �= C(X), then (I + J)zw = (Izw + Jzw)zw.

Remark 3.3. Let I be a z-weak ideal of C(X) and ∅ �= A ⊆ C(X). We put

(I : A) = {g ∈ C(X) : gA ⊆ I}. If we suppose that f ∈ (I : A), g ∈ Mf , and

h ∈ A, then gh ∈ Mfh ⊆ I, which follows that gh ∈ I. Hence Mf ⊆ (I : A).

Now by Remark 3.2, (I : A) is a z-ideal.

Proposition 3.4. The following statements are equivalent:

(1) If I and J are z-weak ideals of C(X), then I + J is a z-weak ideal.

(2) If I and J are proper weak ideals of C(X), then (I+J)zw = Izw+Jzw.

Proof. It is clear. �

Proposition 3.5. Let I be a weak ideal of C(X) and f ∈ C(X).

(1) If Mf ⊆ RadI, then Mf ⊆ I.

(2) If J is a z-weak ideal of C(X) and J ⊆ RadI, then J ⊆ I.

(3) {Mf : f ∈ I} = {Mf : f ∈ RadI}.
(4) (RadI)zw = Izw and (RadI)zw = Izw.

(5) I is a z-weak ideal if and only if RadI is a z-weak ideal.

Proof. (1) See [[2], Proposition 2.1].

(2) By Remark 3.2, J =
⋃

f∈J Mf , and in view of part (1), J ⊆ I.

(3) It is clear, Since for every n ∈ N, Mf = Mfn .

(4) It is obvious, by part (3).

(5) It is trivial, by Remark 3.2, and in view of part (4). �

If I is a proper weak ideal of R, then by Zorn’s Lemma, there is a prime

weak ideal P of R which is minimal member with respect to inclusion in

{Q : Q is prime weak ideal of R and I ⊆ Q}.

Such a minimal member is called a minimal prime weak ideal of I. Let

MPW (I) denotes the set of minimal prime weak ideals of I in R. If I is a

proper weak ideal of R, then RadI =
⋂

P∈MPW (I) P .

It is well known that if I is a z-ideal of C(X) and P ∈ Min(I), then P is a

z-ideal of C(X) (See [[5], p. 197] and [[10], Theorem 1.1]). The converse is also

true, see in [[2], Corollary 2.5] and [[13], Corollary 2.5]. Similarly, we have:

Corollary 3.6. Let I be a weak ideal of C(X). I is a z-weak ideal if and only

if every P ∈ MPW (I) is a z-weak ideal.
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Proof. Let P be a prime weak ideal of C(X) and be a z-weak ideal I ⊆ P .

Suppose that P is not z-weak ideal, then there exist f ∈ P and g ∈ C(X) \ P ,

such that Z(f) = Z(g). Put

S = (C(X) \ P ) ∪ {hfn : h ∈ C(X) \ P &n ∈ N}.
It is clear that S is multiplicative set and S ∩ I = ∅. By Remark 2.9, there

exists a prime weak ideal Q of C(X) such that S ∩ Q = ∅ and I ⊆ Q. It is

manifest that I ⊆ Q ⊆ P and f ∈ P \Q, it follows that P �∈ MPW (I).

Conversly, let every prime weak ideal minimal over I be a z-ideal. Since

RadI =
⋂

P∈MPW (I) P , we conclude that RadI is a z-weak ideal and hence by

Proposition 3.5, I is also a z-weak ideal. �

By Corollary 3.6, it is clear that every z-weak ideal of C(X) is an intersection

of prime z-weak ideals of C(X). Also since (0) is a z-ideal of C(X), every prime

minimal weak ideal of C(X) is z-weak ideal.

The following proposition is a counterpart of Proposition 2.8 in [2].

Proposition 3.7. Let I be a weak ideal in C(X) and let P and Q be prime

weak ideals of C(X).

(1) If I ∩ P is a z-weak ideal, then either I is a z-weak ideal or P is a

z-weak ideal.

(2) If {P,Q} is not chain with respect to inclusion and P ∩Q is a z-weak

ideal, then P and Q are z-weak ideals.

Proof. (1) If I ⊆ P , then I = I∩P is a z-weak ideal. Now we may assume that

I �⊆ P and g ∈ I \ P . Let f ∈ P . We show that Mf ⊆ P . If h ∈ Mf , then

hg ∈ Mfg. Since fg ∈ I ∩ Pand I ∩ P is a z-ideal, then hg ∈ Mfg ⊆ I ∩ P ,

thus h ∈ P . Hence P =
⋃

f∈P Mf , i.e.; P is a z-weak ideal of C(X).

(2) It is clear. �

Proposition 3.8. If P is a prime weak ideal of C(X) which is not a z-weak

ideal, then

A = {I ⊆ P : Iis a z-weak ideal of C(X)}
has maximal element with respect to inclusion and every maximal element of

A is a prime weak ideal of C(X). In particular, if P is a prime weak ideal of

C(X), then P zw is a prime weak ideal.

Proof. Clearly, (0) ∈ A, so by Zorn’s Lemma, A have maximal element. Let

I ∈ A be a maximal element. By hypotheses I ⊂ P , hence there exists Q ∈
MPW (I) such that I ⊆ Q ⊆ P . By Corollary 3.6, Q is a z-weak ideal and

Q ⊂ P , thus Q = I and the proof is complete. �

We need the following lemma which is proved in [13].

Lemma 3.9. For any f1, ..., fn ∈ C(X), there exists g ∈ C(X) such that any

natural power of g divides every fi and Z(g) = Z(f1) ∩ · · · ∩ Z(fn).
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Proposition 3.10. If I is a proper ideal of C(X), then Izw is a z-ideal of

C(X). In particular, if P is a prime ideal of C(X), then P zw is prime ideal.

Proof. Let g, h ∈ Izw. By Remark 3.2, Izw =
⋃
Mf⊆I Mf , it follows that

there exist g1, h1 ∈ C(X) such that g ∈ Mg1 ⊆ I and h ∈ Mh1 ⊆ I. Since

Z(g21 + h2
1) ⊆ Z(g2 + h2), we can then conclude from the Lemma 1.1 in [2]

that g2 + h2 ∈ Mg2
1+h2

1
= Mg1 + Mh1 ⊆ I, hence g2 + h2 ∈ Izw. Also,

by Lemma 3.9, there exists f, g2, h2 ∈ C(X) such that g = fg2, h = fh2

and Z(f) = Z(g) ∩ Z(h) = Z(g2 + h2). Since Izw is z-weak ideal of C(X),

we conclude that f ∈ Izw, and this follows that g + h = f(g1 + h1) ∈ Izw.

Therefore Izw is a z- ideal of C(X).

whenever P is a prime ideal of C(X), then by Proposition 3.8, P zw is a

prime ideal. �

Proposition 3.11. If I is a proper ideal of C(X), then Izw is a z-ideal of

C(X).

Proof. Let g, h ∈ Izw. By Remark 3.2, Izw =
⋃

f∈I Mf , so there exist f1, f2 ∈ I

such that Z(f1) ⊆ Z(g) and Z(f2) ⊆ Z(h). Hence Z(f2
1 + f2

2 ) ⊆ Z(g2 + h2).

Since I is a proper ideal of C(X), we conclude that f2
1 + f2

2 ∈ I. By Remark

3.2, g2 + h2 ∈ Mf2
1+f2

2
⊆ Izw, which implies that (g + h)2 ∈ Izw . Therefore

Z(g)∩ Z(h) = Z(g2 + h2) ∈ Z[Izw] . On the other hand, by Lemma 3.9, there

exists f, g1, h1 ∈ C(X) such that g = fg1, h = fh1 and Z(f) = Z(g) ∩ Z(h).

Since Izw is z-weak ideal of C(X), we conclude that f ∈ Izw, so g + h =

f(g1 + h1) ∈ Izw. Therefore Izw is a z- ideal of C(X). �

Proposition 3.12. If P is a prime ideal of C(X), then Pzw is a prime ideal

of C(X).

Proof. By Propositions 3.11, Pzw is an ideal ofC(X). Let for some f, g ∈ C(X),

fg ∈ Pzw. Put h = |g|− |f |. It is clear that (h∧0)(h∨0) = 0 ∈ P . This follows

that (h ∧ 0) ∈ P or (h ∨ 0) ∈ P . If (h ∧ 0) ∈ P , then Z(h ∧ 0) ∩ Z(fg) ⊆ Z(f)

and Z(h ∧ 0) ∩ Z(fg) ∈ Z(Pzw). Since Pzw is a z-ideal of C(X), we conclude

that f ∈ Pzw. Similarly, if (h ∨ 0) ∈ P , then g ∈ Pzw which completes the

proof. �

Proposition 3.13. If P is a prime weak ideal of C(X), then Pzw is a prime

weak ideal of C(X).

Proof. By Proposition 2.10, there exists {Pλ}λ∈Λ ⊆ Spec(C(X)) such that P =
⋃

λ∈Λ Pλ. Now, by Remark 3.2, we have Pzw =
⋃

f∈P Mf =
⋃

f∈⋃λ∈Λ Pλ
Mf =

⋃
λ∈Λ

⋃
f∈Pλ

Mf =
⋃

λ∈Λ(Pλ)zw . By Proposition 3.12, Pzw is a prime weak

ideal of C(X). �

Example 3.14. If P = {f ∈ C(R) : f(2)f(3) = 0}, then P is prime weak ideal

of C(R) and P = Pzw is not C-weak ideal.
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We say that a proper weak ideal Q of C(X) is a primary weak ideal, if RadQ

is a prime weak ideal of C(X) and if RadQ = P , then Q is said to be P -primary

weak ideal. The following proposition is a counterpart of Proposition 2.8 in [2].

Proposition 3.15. Let I be a weak ideal in C(X) and let Q and Q′ be respec-

tively P -primary and P ′−primary weak ideals of C(X).

(1) If I ∩ Q is a z-weak ideal, then either RadI = I is a z-weak ideal or

RadQ = P is a z-weak ideal.

(2) Qzw is a prime weak ideal.

(3) If {Q,Q′} is not chain with respect to inclusion and Q∩Q′ is a z-weak

ideal, then Q and Q′ are prime z-weak ideals.

Proof. (1) Since by Proposition 3.5, Rad(I∩Q) = Rad(I)∩Rad(Q) = Rad(I)∩
P is a z-weak ideal, then by Proposition 3.7, RadI = I is a z-weak ideal or

RadQ = P is a z-weak ideal.

(2) Since Qzw = (RadQ)zw = P zw, we conclude from Proposition 3.8 that

Qzw is a prime weak ideal of C(X).

(3) Since Q ∩ Q′ = Rad(Q ∩ Q′) = Rad(Q) ∩ Rad(Q′) = P ∩ P ′ is z-weak

ideal and {P, P ′} is not chain with respect to the inclusion, then by Proposition

3.7, and Proposition 3.5, Q and Q′ are prime z-weak ideals.

�

The following proposition is a counterpart of 14B(1) in [5].

Proposition 3.16. The sum of two prime weak ideals of C(X) is either a

prime weak ideal or is the unit ideal.

Proof. Let P and Q be prime weak ideals of C(X). By Proposition 2.10,

P =
⋃

λ∈Λ Pλ and Q =
⋃

γ∈ΓQγ , where for every λ ∈ Λ and γ ∈ Γ, Pλ and Qγ

are prime ideal of C(X). Since the sum of two prime ideals in C(X) is either

prime ideal or is the unit ideal and P +Q =
⋃

λ∈Λ&γ∈Γ(Pλ +Qγ), we conclude

that P +Q is either prime weak ideal or is the unit ideal by Problem 14B(1)

in [5]. �

A space X is called P -space if each finitely generated ideal of C(X) is a

direct summand. Clearly, X is a P -space if and only if C(X) is a regular ring

or equivalently if each Gδ set is open, see [5], 4J.

Proposition 3.17. The following statements are equivalent:

(1) X is a P -space.

(2) Every prime weak ideal of C(X) is a union of maximal ideals of C(X).

(3) Every weak ideal of C(X) is a z-weak ideal.

(4) Every C-weak ideal of C(X) is a z-weak ideal.

Proof. By Theorem 14.29 in [5], and Proposition 2.10, the proof is clear. �
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