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Abstract. The aim of this paper is to prove the Uniform Boundedness

Principle and Banach-Steinhaus Theorem for anti linear operators and

hence strong linear operators on Banach hypervector spaces. Also we

prove the continuity of the product operation in such spaces.
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1. Introduction

The concept of hyperstructure was first introduced by Marty [3] in 1934 and has

attracted attention of many authors in last decades and has constructed some

other structures such as hyperrings, hypergroups, hypermodules, hyperfields,

and hypervector spaces. These constructions has been applied to many disci-

plines such as geometry, hypergraphs, binary relations, combinatorics, codes,

cryptography, probability, and etc. A wealth of applications of this concepts

are given in [1, 2, 4, 12− 14].

In 1988 the concept of hypervector space was first introduced by Tallini.

She studied more properties of this new structure in [6]. We considered the
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generalization of a vector space in the viewpoint of analysis and proved some

important results in this field. See [7− 11]. This paper is arranged as follows.

In section 2 we define the hypervector spaces, norm and different types of

operators in such spaces and give some examples. In section 3 we prove the

Uniform Boundedness Principle and Banach-Steinhaus Theorem for anti linear

operators and hence strong linear operators on Banach hypervector spaces.

Also we show the continuity of the product operation in these spaces.

We denote the set of all complex numbers by C and real numbers by R. Also

in this note the field F is either C or R.

2. Preliminaries

Definition 2.1. ([6]) Let (X,+) be an abelian group and F be a field. Then

a hypervector space is a quadruple (X ,+,o,F ) where o is a mapping:

o : F ×X −→ P∗(X)

such that the following conditions are satisfied:

(1) ∀a ∈ F, ∀x, y ∈ X, ao(x+ y) ⊆ aox+ aoy (right distributivity),

(2) ∀a, b ∈ F, ∀x ∈ X, (a+ b)ox ⊆ aox+ box (left distributivity),

(3) ∀a, b ∈ F, ∀x ∈ X, ao(box) = (ab)ox (associativity),

(4) ∀a ∈ F, ∀x ∈ X, ao(−x) = (−a)ox,

(5) ∀x ∈ X, x ∈ 1ox.

Note that the set ao(box) in (3) is of the form ∪y∈boxaoy.

Example 2.2. Suppose z and a are two nonzeros arbitrary elements of C and

R, respectively. C with the usual sum and the following product is a weak

hypervector space on R:

aoz = {reiθ; 0 < r ≤| a || z |, θ = arg(z)}.
If a = 0 or z = 0, then we define aoz = 0.

Example 2.3. Suppose z and a are arbitrary elements of C and R, respectively.

C with the usual sum and the following product is a weak hypervector space

on R:

a.z = {reiθ; 0 ≤ r ≤| a || z |, 0 ≤ θ ≤ 2π}.
Definition 2.4. ([6]) Let (X,+, o, F ) be a hypervector space over a field F .

We define a pseudonorm in X as being a mapping ‖ . ‖: X −→ R, of X into

the real numbers such that:

(i) ‖ 0 ‖= 0,

(ii) ∀x, y ∈ X, ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖ ,

(iii) ∀a ∈ F, ∀x ∈ X, sup ‖ aox ‖=| a |‖ x ‖.
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A pseudonorm in X is called norm if:

(iv) ‖ x ‖= 0 ⇔ x = 0.

Definition 2.5. Let X and Y be hypervector spaces over F . A map T : X −→
Y is called

(i) linear if and only if

T (x+ y) = T (x) + T (y), T (aox) ⊆ aoT (x), ∀x, y ∈ X, a ∈ F

(ii) anti linear if and only if

T (x+ y) = T (x) + T (y), T (aox) ⊇ aoT (x), ∀x, y ∈ X, a ∈ F ,

(iii) strong linear if and only if

T (x+ y) = T (x) + T (y), T (aox) = aoT (x), ∀x, y ∈ X, a ∈ F .

Example 2.6. Let T be a map on hypervector space C (that was defined in

example 2.3) into C (that was defined in example 2.2) over R and defined by

x �→ x. We see that T is an anti linear operator, because in this space for any

a ∈ R and x ∈ C we have

T (aox) = {Ty; y ∈ a.x}
= {y; y ∈ a.x}
= {reiθ; 0 < r ≤| a || z |, 0 ≤ θ ≤ 2π}

and

aoTx = a.x = {reiθ; 0 ≤ r ≤| a || z |, θ = arg(z)}.
So T (a.x) ⊇ aoTx and hence T is anti linear.

3. Main results

Lemma 3.1. ([7]) If X is a weak hypervector space over F , 0 �= a ∈ F and

x ∈ X, then there exists a z in aox such that we have x ∈ a−1oz.

Note that if X is a normed weak hypervector space, then it is easy to check

that ‖ z ‖=| a |‖ x ‖.
Definition 3.2. A Banach hypervector space is a complete normed hypervec-

tor space in the metric defined by its norm.

Theorem 3.3. Let A be a set of bounded anti linear operators on a Banach

hypervector space X into a normed hypervector space Y , such that {‖ Tx ‖
;T ∈ A} is bounded for every x ∈ X, say,

‖ Tx ‖≤ cx, ∀T ∈ A,

where cx is a real number. Then the set of the norms {‖ T ‖;T ∈ A} is bounded,

that is, there is a c such that

‖ T ‖≤ c, ∀T ∈ A.
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Proof. For every k ∈ N, let Ak ⊆ X be defined by the following form

Ak = {x ∈ X ; ‖ Tx ‖≤ k, ∀T ∈ A}.
Ak is closed. Indeed, for any x ∈ Ak there is a sequence {xj} in Ak converging

to x. This means that for every fixed T we have ‖ Txj ‖≤ k and obtain

‖ Tx ‖≤ k, because T is continuous and so is the norm. Hence x ∈ Ak, and Ak

is closed.

By assumption, each x ∈ X belongs to some Ak. Hence

X =

∞⋃

k=1

Ak.

Since X is complete, Baire’s Theorem implies that some Ak contains an open

ball, say,

B0 = B(x0, r) ⊂ Ak0 . (1)

Let x ∈ X be arbitrary, not zero. We set

Z = x0 + γox, (2)

where γ = r
2‖x‖ . Then sup ‖ Z − x0 ‖= sup ‖ γox ‖= r

2 < r, so that Z ⊆ B0.

By (1) and the definition of Ak0 we thus have

‖ Tz ‖≤ k0, ∀T ∈ A, ∀z ∈ Z. (3)

Also since x0 ∈ B0

‖ Tx0 ‖≤ k0. (4)

On the other hand, by T (γox) ⊇ γoTx and (2) we obtain T (Z − x0) ⊇ γoTx.

So ‖ T (γox) ‖⊇‖ γoTx ‖ and Lemma 3.1 imply that γ ‖ Tx ‖∈‖ T (Z − x0) ‖.
Thus there exists a z0 ∈ Z such that ‖ T (z0 − x0) ‖= γ ‖ Tx ‖. (3) and (4)

yield for all T ∈ A

γ ‖ Tx ‖=‖ T (z0 − x0) ‖≤‖ Tz0 ‖ + ‖ Tx0 ‖≤ 2k0,

this implies

‖ Tx ‖≤ 4

r
‖ x ‖ k0.

Hence by Proposition 3.7 in [6] for all T ∈ A,

‖ T ‖= sup
‖x‖=1

‖ Tx ‖≤ 4

r
k0

which is the assertion with c = 4k0/r. �

By Theorem 3.3 we easily have the following corollary.

Corollary 3.4. Let A be a set of bounded strong linear operators on a Banach

hypervector space X into a normed hypervector space Y such that {‖ Tx ‖;T ∈
A} is bounded for every x ∈ X. Then the set of the norms {‖ T ‖;T ∈ A} is

bounded.
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We want to prove the Banach-Steinhaus Theorem for hypervector spaces.

To this end, we need the following Lemmas.

The proof of the following Lemma is not difficult. Hence it is omitted.

Lemma 3.5. Let X be a normed hypervector space and A and B be subsets of

P∗(X). A map D : P∗(X)×P∗(X) → R that is defined as following, is a meter

on this space:

D(A,B) = max{supx∈Adist{x,B}, supy∈Bdist{A, y}}.
Definition 3.6. Let X be a normed hypervector space, An be a sequence of

subsets of X and A be a subset of X . We say that An converges to A and

write limn→∞An = A or An → A, when for any ε > 0 there exists a N > 0

such that D(An, A) < ε, for all n > N .

Lemma 3.7. Let X be a normed hypervector space and A and B be subsets

of X. Let also An and Bn be sequences of P∗(X) that converges to A and B,

respectively. If there exists a N such that for any n > N we have An ⊆ Bn,

then A ⊆ B.

Proof. It is clear that An −Bn = ∅ for any n > N . So limn→∞(An −Bn) = ∅
or limn→∞An − limn→∞Bn = ∅. This implies A−B = ∅ and hence A ⊆ B.

�

Lemma 3.8. Let X be a normed hypervector space over F with the following

property:

∀a ∈ λox, ∃b ∈ μox ⇒ a+ b ∈ (λ + μ)ox, ∀λ, μ ∈ F, ∀x ∈ X.

Then o is a continuous map with respect to x and by the meter defined in

Lemma 3.5.

Proof. Let x ∈ X , a be a fixed element of F , {xn} be a sequence in X such

that xn → x and ε > 0 be arbitrary. So there exists N > 0 such that for any

n > N we have ‖ xn − x ‖≤ ε | a |−1. Now if y ∈ aox, then by assumption for

every fixed n there exists yn ∈ aoxn such that

yn − y ∈ ao(xn − x),

and hence

‖ yn − y ‖≤| a |‖ xn − x ‖< ε, ∀n > N.

This implies

dist{aoxn, y} < ε, ∀n > N,

and so for n > N we obtain

supy∈aoxdist{aoxn, y} < ε.
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On the other hand, for n > N if yn ∈ aoxn, there exists y ∈ aox such that

yn − y ∈ ao(xn − x) and hence ‖ yn − y ‖≤| a |‖ xn − x ‖< ε. This implies

supyn∈aoxndist{yn, aox} < ε, ∀n > N.

Thus for any n > N we obtain

D(aoxn, aox) = max{supyn∈aoxndist{yn, aox}, supy∈aoxdist{aoxn, y}} < ε,

and this completes the proof. �

Theorem 3.9. Let {Tn} be a sequence of bounded anti linear operators on

a Banach hypervector space X into a normed hypervector space Y with the

following property:

∀a ∈ λox, ∃b ∈ μox ⇒ a+ b ∈ (λ + μ)ox, ∀λ, μ ∈ F, ∀x ∈ X.

Also if for any x ∈ X the limit of {Tnx} exists and it is equal to Tx, then T is

a bounded anti linear operator.

Proof. We first show that T is an anti linear operator. It is clear that T is

additive. So it is enough to show T (aox) ⊇ aoT (x) for all a ∈ F and x ∈ X .

Since Tnx → Tx, so by Lemma 3.8 we have

aoTnx → aoTx, (5)

by the defined meter in Lemma 3.5. Set

A = {Ty;Ty = limn→∞Tny, y ∈ aox}.
If z ∈ A, then for a y in aox we have z = Ty and Tny → Ty. If ε > 0 be

arbitrary so there exists N > 0 such that ‖ Tny − z ‖< ε. Thus we obtain

dist{Tn(aox), z} < ε, ∀n > N.

Now let n0 be an arbitrary number and yn0 ∈ Tn0(aox). So yn0 = Tn0z, for a

z in aox. Set yn = Tnz. It is clear that yn → Tz. So there exists M > 0 such

that for all n > M we have ‖ yn − Tz ‖< ε. Thus we obtain

dist{yn, A} < ε, ∀n > N.

Finally, for n > max{N,M} we obtain

D(Tn(aox), A) = max{supyn∈Tn(aox)dist{yn, A}, supz∈Adist{Tn(aox), z}} < ε,

and hence

Tn(aox) → A. (6)

So by (5) and (6) and Lemma 3.7 we obtain

aoTx ⊆ A.

On the other hand, A ⊆ T (aox). So aoTx ⊆ T (aox) and hence T is an

anti linear operator. Now we must show that T is bounded. Since {Tnx}
is convergent for all x ∈ X , so {Tnx} is bounded for all x ∈ X . Thus, by
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Theorem 3.3 there exists a constant c > 0 such that ‖ Tn ‖≤ c for all n. If x

be an arbitrary element of closed unit ball, then for every n we have

‖ Tx ‖≤‖ Tx− Tnx ‖ + ‖ Tnx ‖≤‖ Tx− Tnx ‖ +c,

where for enough large n this implies

‖ Tx ‖≤ c,

and since x is belong to closed unit ball, by proposition 3.7 in [5] we obtain

‖ T ‖≤ c,

and this completes the proof. �
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