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Abstract. In this paper, stability for uncertain time variant linear sys-

tems with time delay is studied. A new sufficient condition for delay-

dependent systems is given in matrix inequality form which depends

on the range of delay. Then, we introduce a new direct computational

method to solve delay systems. This method consists of reducing the

delay problem to a set of algebraic equations by first expanding the can-

didate function as hybrid functions with unknown coefficients. By using

collocation method, the coefficients of the hybrid functions are obtained.

Some numerical examples are given to illustrate and compare our results

with other existing methods in the literature.

Keywords: Stability, Time delay, Lyapunov-Krasovskii functional, Uncer-
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1. Introduction

Dynamical systems with time delays have been of considerable interest for

decades. Delay systems represent a class of infinite-dimensional systems largely

used to describe economic systems, biology [2,9,10,20,21,25], engineering [27],

neural network [30], transport phenomena and population dynamics [11-18].

The main motivation for the stability analysis for delay systems is related to
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the difficulty in having good estimates of the delay values in systems. Differ-

ent approaches to this problem have already been proposed. Two of the most

popular approaches are characteristic equation and Lyapunov function. The

characteristic equation can be defined as the equation obtained from the origi-

nal system by looking for a nontrivial solution of the form eλtc0, (t > 0), where

c0 is a constant vector of appropriate dimension. Due to its form, the charac-

teristic equation associated with delay system is transcendental, which leads to

its having an infinite number of roots in the complex plane. The main idea of

Lyapunov function method is to transform the original stability issue into the

evolution of some Lyapunov function in an Euclidian space [6, 22]. Also, delay

systems are a very important class of systems whose control and optimization

have been of interest to many investigators. Much progress has been made

towards the solution of delay system using the orthogonal functions. Special

attention has been given to applications of Walsh functions [5], block-pulse

functions [25], Laguerre polynomials [10], Legendre polynomials [12], Cheby-

shev polynomials [7] and Fourier series [19].

We provide an overview of two application problems, the air-to-fuel ratio con-

trol in gasoline engines and inverted pendulum systems.

The air-to-fuel ratio control is imperative for conventional gasoline vehicles.

The analysis of stability for the air-to-fuel ratio control system when the en-

gine speed, and air flow into the engine, are constant is of interest to the

researchers . In this case, td (measured output) and τe (estimated output) are

constant. The error between td and τe, e, can be shown to satisfy the following

equations, [1]

(1.1)

ż = e,

ė = −1
τe

(t)− 1
τe
(kpe(t− td) + kiz(t− td)).

System (1) is a linear time-invariant system with a single delay. To apply the

proposed method in this paper it is convenient to transform system (1) into

this form:

(1.2)

d
dθx = A(ε)x(θ) +B(ε)x(θ − 1),

x = [z, e]T , ε = [td, τe, kp, ki]
T , θ = t

td
,

where θ is the scaled time and ε is a parameter vector.

Pendulum systems: Consider the inverted pendulum on a cart such as in [31].

The physical structure is shown in Fig. 1 (which is taken from [31]) where M

is the mass of the cart, m is the mass of the pendulum rod, b is the friction

coefficient of the cart. l is the length of the corresponding rod; F is the force

acting on the cart, x is the horizontal displacement of the cart, φ is the angle

between the pendulum rod and the vertical. Let state variables be x, ẋ, φ and

φ̇ which correspond to the horizontal position, horizontal velocity of the cart,
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angle and angular velocity of the pole respectively. The equations of motion

derived by using Newton’s Second Law can be obtained as follows:

ẋ = ẋ,

ẍ = −(I+ml2)b
I(M+m)+Mml2 ẋ+ m2gl2

I(M+m)+Mml2φ+ (I+ml2)b
I(M+m)+Mml2 u,

φ̇ = φ̇,

φ̈ = −mlb
I(M+m)+Mml2 ẋ+ mgl(M+m)

I(M+m)+Mml2φ+ ml
I(M+m)+Mml2 u,

where M,m, b, l and I are known constants. Let state variables be x = x1(t),

ẋ = x2(t), φ = x3(t) and φ̇ = x4(t), the two delays be τ and d, then from [28]

the system can be rewritten in the form of

(1.3) ẋ(t) = Ex(t) + Fx(t− τ) +Gu(t) +Hu(t− d).

To apply the proposed method in this paper, we consider the case of τ = d.

Fig. 1.

In the current work, first, we investigate the stability of time variant sys-

tems with time delay where the delay is bounded. In order to establish new

delay-dependent sufficient conditions for stability of such a system, we use the

Lyapunov-Krasovskii functional method with linear matrix inequality (LMI)

approach together with the parameterized first-order model transformation.

Also in the present paper we introduce a new direct computational method to

solve the delay system. This method consists of reducing the delay problem to

a set of algebraic equations by first expanding the candidate function as hybrid

functions with unknown coefficients. These hybrid functions, which consist of

block-pulse functions plus Legendre polynomials are provided. Then by using

the Gauss (-Legendre) nodes, the coefficients of the hybrid function for the
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solution of delay system are obtained. Finally we will demonstrate the results

by considering four illustrative examples.

2. Stability

The analysis of the stability of time-varying systems with delay in both the

state and control are important in theory and in practice [3]-[29]. Recently,

Richard [24] summarized some current researches on time-delay systems and

listed four problems, one of which is:

(2.1) ẋ(t) = E(t)x(t) + F (t)x(t − τ) +G(t)u(t) +H(t)u(t− τ), 0 ≤ t ≤ 1,

(2.2) x(0) = x0,

(2.3) x(t) = ϕ(t), −τ ≤ t < 0,

(2.4) u(t) = ψ(t), −τ ≤ t < 0,

where x(t) ∈ R
l is state vector, u(t) ∈ R

q is control vector, E(t), F (t), G(t) and

H(t) are certainty matrices of appropriate dimensions, x0 is a constant specified

vector, and ϕ(t) and ψ(t) are arbitrary known functions. The time-delay τ is

positive, bounded and satisfies

(2.5) 0 ≤ τ ≤ h.

Definition 1. The uncertain time delay system (4) is said to be stabilizable if

there exists a linear memoryless state feedback control law u(t) = Kx(t),K ∈
R

q×l, such that the resulting closed-loop system is stable [8].

By using the definition (1), the time varying system (4) is equivalent to the

following system:

(2.6) ẋ(t) = [E(t) +G(t)K]x(t) + [F (t) +H(t)K]x(t− τ).

Suppose that

(2.7) E(t) +G(t)K = A0 +�A0(t), F (t) +H(t)K = A1 +�A1(t),

where A0, A1 ∈ R
l×l are constant matrices and the uncertainties ΔA0(t),

ΔA1(t) are of the form

(2.8) ΔA0(t) = D0F0(t)E0, ΔA1(t) = D1F1(t)E1,

where D0, E0, D1, and E1 are appropriate dimensional constant matrices, and

‖ F0(t) ‖ ≤ 1, ‖ F1(t) ‖ ≤ 1 for all t. Then equation (9) can be rewritten as

(2.9) ẋ(t) = [A0 +D0F0(t)E0]x(t) + [A1 +D1F1(t)E1]x(t− τ).

In addition, the goal of this paper is to find the criteria for stability of the

system (2.1) by using the Lyapunov method in conjunction with linear matrix

inequality (LMI) techniques.
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Since x(t) is continuously differentiable for t ≥ 0, by adopting the Leibnitz-

Newton formula, we have

(2.10)
x(t− τ) = x(t)− ∫ 0

−τ ẋ(t+ θ)dθ =

x(t)− ∫ 0

−τ [A0(θ)x(t + θ) +A1(θ)x(t + θ − τ)]dθ.

Therefore, the system (12) can be transferred into a distributed delay system

(2.11)
ẋ(t) = (A0 +D0F0(t)E0 + C)x(t) + (A1 +D1F1(t)E1 − C)x(t − τ)

−C ∫ t

t−τ
[A0(θ)x(θ) +A1(θ)x(θ − τ)]dθ,

where C is a parametric matrix which derives the stability result less restrictive

to some degree. Since in this process only one integration over one delay interval

is used, the process is called parameterized first-order model transformation

[21]. The stability of the system (14) implies [4] the stability of the system

(12).

Since the stability of the system (14) implies the stability of the system (12) and

consequently the stability of the system (9), we mainly focus on the stability of

the system (14) in the main theorem. The following lemmas will be essential

for the proof of the main theorem.

Lemma 1. Let w(t) =
∫ b(t)

a(t)

∫ t

t−θ
f(s)dsdθ. Then the following is satisfied [9]

d

dt
w(t) = (b − a)f(t)− (1 − ḃ)

∫ t−a

t−b

f(s)ds+ (ḃ− ȧ)

∫ t

t−a

f(s)ds.

Lemma 2. Let a(t) ≤ b(t). Then, the following inequality holds [9]

‖
∫ b

a

f(s)ds ‖
2

≤ (b− a)

∫ b

a

‖ f(s) ‖2ds.

Now we present a sufficient condition that guarantees the stability of the system

(2.1) satisfying the uncertainty in equation (11) and the time delay in equation

(8).

Theorem 1. The system (14) is asymptotically stable, if there exist four

positive -definite matrices P,Q10, Q11, R > 0, positive constants λ, η0, η1 and a

constant matrix W ∈ R
n×n such that

Ω1 = PA0 +AT
0 P +W +WT + 1

λPD0D
T
0 P + λET

0 E0+

(PA1 −W )R−1(PA1 −W )T + PD1D
T
1 P +WQ−1

10 W
T+

WQ−1
11 W

T + S1 + h2S10(Q10, η0) + h2S11(Q11, η1) < 0,

satisfying

(η0I −DT
0 Q10D0) > 0, (η1I −DT

1 Q11D1) > 0, S1 = R+ ET
1 E1.

Also, the corresponding model transformation of the matrix in the system (14)

is given by C = P−1W.

proof: We consider the following Lyapanov-Krasovskii functional

(2.12) V (x(t)) = V1(x(t)) + hV2(x(t)) + hV3(x(t)),
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where

V2(x(t)) =

∫ h

0

∫ t

t−θ

xT (s)S10(Q10, η0)x(s)dsdθ,

V3(x(t)) =

∫ h+τ

τ

∫ t

t−θ

xT (s)S11(Q11, η1)x(s)dsdθ.

The system is asymptotically stable if the derivative of the functional is strictly

negative. By using Lemma 1, we have

d

dt
V2(x(t)) = hxT (t)S10(Q10, η0)x(t) −

∫ t

t−h

xT (s)S10(Q10, η0)x(s)ds,

d

dt
V3(x(t)) = hxT (t)S11(Q11, η1)x(t) −

∫ t−τ

t−h−τ

xT (s)S11(Q11, η1)x(s)ds

≤ hxT (t)S11(Q11, η1)x(t) − (1− d)

∫ t−τ

t−h−τ

xT (s)S11(Q11, η1)x(s)ds.

Also, let: V1(x(t)) = xT (t)Px(t) +
∫ t

t−τ
xT (λ)S1(λ)x(λ)dλ, with P > 0, then

its time derivative is

(2.13)

d
dtV1(x(t)) = xT (t)(PA0 +AT

0 P +W +WT )x(t)

+2xT (t)PD0F0(t)E0x(t) + 2xT (t)(PA1 −W )x(t− τ)

+2xT (t)PD1F1(t)E1x(t− τ) − 2xT (t)PC
∫ t

t−τ A0(θ)x(θ)dθ

−2xT (t)W
∫ t

t−τ
A1(θ)x(θ − τ)dθ + xT (t)S1x(t)

−xT (t− τ)S1x(t− τ).

Using the following inequalities for any positive real number β > 0 and any

positive definite matrix D, we have

−2uTv ≤ 2uT v ≤ βuTD−1u+ β−1vTDv,

where u, v ∈ R
n. We get

(2.14)

d
dtV1(x(t)) ≤ xT (t)(PA0 +AT

0 P +W +WT )x(t)

+λxT (t)ET
0 E0x(t) +

1
λx

T (t)PD0D
T
0 Px(t)

+xT (t)(PA1 −W )R−1(PA1 −W )Tx(t) + xT (t− τ)Rx(t − τ)

+xT (t)PD1D
T
1 Px(t) + xT (t− τ)ET

1 E1x(t− τ)

+2 ‖ xT (t)WQ
−1/2
10 ‖ . ‖ ∫ t

t−τ
Q

1/2
10 A0(θ)x(θ)dθ ‖

+2 ‖ xT (t)WQ
−1/2
11 ‖ . ‖ ∫ t

t−τ
Q

1/2
11 A1(θ)x(θ − τ)dθ ‖

+xT (t)S1(x(t)− x(t − τ)S1x(t− τ).

The following relations are obtained from [9]

AT
0 (t)Q10A0(t) = [A0 +D0F0(t)E0]

T
Q10 [A0 +D0F0(t)E0]

≤ AT
0Q10A0 +AT

0 Q10D0(η0I −DT
0 Q10D0)

−1DT
0 Q10A0

+η0E
T
0 E0 = S10(Q10, η0),
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AT
1 (t)Q11A1(t) = [A1 +D1F1(t)E1]

T Q11 [A1 +D1F1(t)E1]

≤ AT
1 Q11A1 +AT

1Q11D1(η1I −(2.15)

DT
1 Q11D1)

−1DT
1 Q11A1 + η1E

T
1 E1

= S11(Q11, η1).

Recall the following relations from [9]

∫ t

t−τ

‖ Q1/2
10 A0(θ)x(θ) ‖

2
dθ ≤

∫ t

t−τ

xT (θ)S10(Q10, η0)x(θ)dθ,

∫ t

t−τ

‖ xT (θ − τ)AT
1 (θ)Q

1/2
11 ‖2dθ ≤

∫ t−τ

t−τ−h

xT (θ)S11(Q11, η1)x(θ)dθ,

and apply this to equation (17) to obtain

d

dt
V1(x(t)) ≤ xT (t)(PA0 +AT

0 P +W +WT +
1

λ
PD0D

T
0 P

+λET
0 E0 + PD1D

T
1 P + (PA1 −W )R−1(PA1 −W )T )x(t)

+xT (t− τ)Rx(t − τ) + x(t− τ)(R + ET
1 E1)x(t− τ)

+xT (t)WQ−1
10 W

Tx(t) + τ

∫ t

t−τ

xT (θ)S10(Q10, η0)x(θ)dθ

+xT (t)WQ−1
11 W

Tx(t) + h

∫ t−τ

t−τ−h

xT (θ)S11(Q11, η1)x(θ)dθ

+xT (t)S1x(t)− xT (t− τ)S1x(t− τ).

Therefore

V̇ (x(t)) ≤ xT (t)(PA0 +AT
0 P +W +WT + 1

λPD0D
T
0 P+

λET
0 E0 + PD1D

T
1 P + (PA1 −W )R−1(PA1 −W )T +WQ−1

10 W
T+

WQ−1
11 W

T + S1 + h2S10(Q10, η0) + h2S11(Q11, η1))x(t) < 0.

Thus, if the conditions of theorem hold then the derivative of the functional is

strictly negative which implies asymptotic stability.

3. Numerical solution

In this section the solution of time delay systems is obtained by using a hy-

brid functions and collocation method. The properties of the hybrid functions

consisting of block-pulse functions and Legendre polynomials are presented.

3.1. Properties of hybrid functions

Hybrid functions b(n,m, t), n = 1, 2, ..., N,m = 0, 1, ...,M − 1, have three

arguments: n is the order of block-pulse functions, m is the order of Legendre
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polynomials, and t is the normalized time [18]. They are defined on the interval

[0, tf) as

b(n,m, t) =

{
Pm(2Ntf t− 2n+ 1), t ∈ [n−1

N tf ,
n
N tf ),

0, otherwise.

Here Pm(t) are the well-known Legendre polynomials of order m. A function

f(t) defined over the interval [0, tf ] may be expanded as

(3.1) f(t) �
N∑

n=1

M−1∑
m=0

cnmb(n,m, t) = cTB(t),

where

(3.2) c = [c10, ..., c1(M−1)|c20, ..., c2(M−1)|...|cN0, ..., cN(M−1)]
T ,

(3.3) B(t) = [b(1, 0, t), ..., b(1,M − 1, t)|...|b(N, 0, t), ..., b(N,M − 1, t)]T .

The integration of the vector B(t) defined in equation (21) can be approxi-

mated by
t∫

0

B(t
′
)dt

′ � PB(t),

where P is the NM ×NM operational matrix for integration and is given in

[23]. Now, consider the linear time varying system (4), let

(3.4) x(t) = [x1(t), x2(t), · · · , xl(t)]T ,

(3.5) u(t) = [u1(t), u2(t), · · · , uq(t)]T ,

(3.6) B̂(t) = Il ⊗BT (t),

(3.7) B̂1(t) = Iq ⊗BT (t),

where Il and Iq are the l and q dimensional identity matrices respectively,

B̂(t) and B̂1(t) are lMN × l and qMN × q matrices respectively as well,

and ⊗ denotes Kronecker product [18]. Assume that each of xi(t) and uj(t),

i = 1, 2, · · · , l, j = 1, 2, · · · , q can be written in terms of hybrid functions as

(3.8) ẋi(t) = BT (t)Xi,

(3.9) ui(t) = BT (t)Uj .

By using equations (24)-(27) we have

(3.10) ẋ(t) = B̂(t)X,

(3.11) u(t) = B̂1(t)U,
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where X and U are vectors of order lMN×1 and qMN×1, respectively, given

by

X = [X1, X2, · · · , Xl]
T ,

U = [U1, U2, · · · , Uq]
T .

From equation (26) we get

(3.12) x(t) = ˆB(t)P̂X + x(0),

where P̂ = Il ⊗ PT . We can also approximate X(t − τ) in terms of hybrid

function as

(3.13) x(t − τ) =

{
ϕ(t− τ), 0 < t < τ,

B̂(t− τ)P̂X + x(0), τ < t < 1,

moreover

(3.14)

t∫
0

B̂(t
′
)dt

′
= (Il ⊗BT (t))(Il ⊗ PT ) = B̂(t)P̂ .

3.2. Solution of time varying linear delay systems

Consider the time varying linear delay systems given in equation (4). To

solve x(t), we first choose N in the following manner:

(3.15) N =

⎧⎪⎨
⎪⎩

tf
τ ,

tf
τ ∈ Z,

[(
tf
τ )] + 1, otherwise,

where [.], denotes greatest integer value. Define

In = [
n− 1

N
tf ,

n

N
tf ), n = 1, ..., N,

the motivation for choosing such subintervals is to include the primary discon-

tinuities of the solution in the boundaries of In.

Also from equations (4)-(7) and (22)-(32) the following is obtained

(3.16)

B̂(t)X = E(t)(B̂(t)P̂X + x(0)) + F (t)(ϕ(t − τ) + B̂(t− τ)P̂X

+x(0)) +G(t)B̂1(t))U +H(t)(ψ(t − τ) + B̂1(t− τ)P̂U).

For suitable collocation points we choose the points as

tnj = (
tf
2N

)(tj − 1) +
n

N
tf , j = 0, 1, ...,M − 1, n = 1, 2, ..., N,
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where tj are the M Legendre nodes for [−1, 1] and the collocation points tnj
are the shifted of tj into In, n = 1, ..., N . We now collocate equation (34) at

MN points tnj as

(3.17)

B̂(tnj)X = E(tnj)(B̂(tnj)P̂X + x(0)) + F (tnj)(ϕ(tnj − τ) + B̂(tnj − τ)P̂X

+x(0)) +G(tnj)B̂1(tnj)U +H(tnj)(ψ(tnj − τ) + B̂1(tnj − τ)P̂ U).

Equation (35) gives MN linear equations which can be solved for the elements

of X using the well Newton’s iterative method. x(t) is gained by substituting

X in equation (30).

4. Illustrative examples

In this section, some numerical examples will be demonstrated to compare

with the previous results.

Example 1. Let us consider the following easy case of the time delay uncertain

system:

ẋ(t) = A0x(t) +A1x(t− τ) +B0u(t) +B1u(t− τ),

where

A0 =

( −4 −3.923076923

1 0

)
, A1 =

( −.05 −0.1

−1.623076923 −6.130177515

)
,

B0 =

(
1

0

)
, B1 =

(
0

1

)
. Consequently the maximum delay associated

with P =

(
1 1.923076923

1.923076923 6.130177515

)
, W =

(
0.06 0

0 0.03

)
, Q10 =(

1
6 0

0 1
6

)
, Q11 = I2×2, K = BT (t)P, R =

(
0.3 0

0 2

)
, ΔA0(t) = ΔA1(t) =

0, is obtained as τ < 0.9523. Note that this example is made by authors.

Example 2. Let us consider the uncertain time delay systems with time

varying delay described by the following state equation:

ẋ(t) = A0x(t) +A1x(t− τ) + ΔA0x(t) + ΔA1x(t− τ),

where A0 =

( −2 0

0 −1

)
, A1 =

( −1 0

−1 −1

)
, ‖ ΔA0(t) ‖≤ 0.05 and ‖

ΔA1(t) ‖≤ 0.1. With P =

(
1 −0.9

−0.9 1

)
, λ = 1, R =

(
2 0

0 1

)
,W =( −0.1 0

0 −0.5

)
, Q10 =

(
0.1 0

0 1

)
, Q11 =

(
0.1 0

0 0.9

)
, η1 = 0.2 and

η0 = 0.1, we conclude that the system is stable if τ < 0.4661. This value is

larger than τ < 0.43 in [4].
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Example 3: Consider a time-varying delay system described by

ẋ(t) = 16tx(t− 1
4 ),

x(0) = 1,

x(t) = 0, − 1
4 ≤ t < 0,

that is stable for τ = 0.25. The exact solution is [18]

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, 0 ≤ t < 1
4 ,

1 + 4(t− 1
4 ) + 8(t− 1

4 )
2
, 1

4 ≤ t < 1
2 ,

5
2 + 8(t− 1

2 ) + 24(t− 1
2 )

2

+ 128
3 (t− 1

2 )
3 + 32(t− 1

2 )
4, 1

2 ≤ t < 3
4 ,

163
24 + 20(t− 3

4 ) + 68(t− 3
4 )

2

+ 416
3 (t− 3

4 )
3 + 224(t− 3

4 )
4

+ 640
3 (t− 3

4 )
5 + 256

3 (t− 3
4 )

6, 3
4 ≤ t < 1.

Since τ = 0.25, we solve this problem with the method presented in Section

3 by choosing N=4 and M=5. In Table 1 a comparison is made between the

exact solution and the approximate solution of x(t) for 0 ≤ t ≤ 1.

Table 1. Approximate and exact values of x(t).

t Numerical Solution Exact

0.0 1.000000000000 1.000000000000

0.1 1.000000000000 1.000000000000

0.2 1.000000000000 1.000000000000

0.3 1.220000000000 1.220000000000

0.4 1.780000000000 1.780000000000

0.5 2.499999999999 2.500000000000

0.6 3.585866666666 3.585870000000

0.7 5.452533333333 5.452533333333

0.8 8.480308022689 8.480308022690

0.9 13.41991394574 13.41991394574

1.0 21.81125230994 21.81125230999

In this problem, the error of the approximation of solution is:

EN,M= ||xexact−xN,M ||∞= max
0≤t≤1

|xexact(t)−xN,M (t)|,M = 0, 1, 2, ...,

where xN,M (t) is the approximate value of x(t) and N is a fixed number. In

this example we have E4,5 ≤ 5× 10−12

Example 4: Consider the same interval system as given in [30]:

ẋ(t) = A0(t)x(t) +A1(t)x(t − τ),

where A0(t) = A0 + (ε0 sin
2 t)I2, A1(t) = A1 + (ε1 cos

2 t)I2, where A0, A1

are known 2 × 2 matrices, ε0 and ε1 are uncertain but bounded as | ε0 |≤
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0.35 and | ε1 |≤ 0.35. Here we assume that A0 =

( −2 0

0 −1.9

)
, A1 =( −0.5 0

−0.1 −0.5

)
, with P =

(
172.2344 0

0 140

)
, R =

(
86 0

0 70

)
, W =( −0.1172 0

0 −0.1

)
, Q10 = Q11 =

(
0.1 0

0 1

)
= D0 = D1, E0 = E1 =(

5 0

0 5

)
, λ = 3, d = 0, η0 = η1 = 0.5. By considering the condition we get

h < 0.961671992 which is greater than h < 0.73 of the example in [30] with the

same condition. We applied the method presented in Section 3 for | ε0 |= 0.3,

| ε1 |= 0.2, τ = .25 and x(t) = 1 for −τ ≤ t < 0, the computational results are

given in Tables 2 and 3:

Table 2. Approximate values of x1(t).

t N = 4,M = 6 N = 4,M = 7 N = 4,M = 8 N = 4,M = 9

0.0 1.000000000383 1.000000000004 1.000000000000 1.000000000000

0.1 0.818812466605 0.818812466637 0.818812466640 0.818812466640

0.2 0.670852239548 0.670852239480 0.670852239482 0.670852239483

0.3 0.536019149150 0.536019153054 0.536019153220 0.536019153217

0.4 0.416389278469 0.416389276918 0.416389277062 0.416389277060

0.5 0.322279796990 0.322279820464 0.322279820950 0.322279820953

0.6 0.248760122354 0.248760121933 0.248760121765 0.248760121765

0.7 0.191777319156 0.191777324147 0.191777324963 0.191777324965

0.8 0.147679062343 0.147679065294 0.147679065385 0.147679065387

0.9 0.113600463339 0.113600462938 0.113600463024 0.113600463024

1.0 0.087294815424 0.087294828803 0.087294828476 0.087294828476

Table 3. Approximate values of x2(t).

t N = 4,M = 6 N = 4,M = 7 N = 4,M = 8 N = 4,M = 9

0.0 1.000000002135 1.000000000000 1.000000000000 1.000000000000

0.1 0.827041668543 0.827041668740 0.827041668741 0.827041668740

0.2 0.684404354022 0.684404353680 0.684404353680 0.684404353681

0.3 0.548167710187 0.548167713048 0.548167713172 0.548167713169

0.4 0.423073764020 0.423073762387 0.423073762493 0.423073762492

0.5 0.324644523787 0.324644549418 0.324644549921 0.324644549924

0.6 0.248030323842 0.248030323419 0.248030323245 0.248030323244

0.7 0.189129765919 0.189129771414 0.189129771224 0.189129771225

0.8 0.143963941347 0.143963944851 0.143963944952 0.143963944954

0.9 0.109409425501 0.109409425089 0.109409425185 0.109409425185

1.0 0.083017439576 0.083017455163 0.083017454776 0.083017454776
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To show the convergence behavior of the approximate solution of this problem,

we define the maximum errors for xi as,

EN,M+1
i = ||xN,M+1

i −xN,M
i ||∞= max

0≤t≤1
|xN,M+1

i (t)−xN,M
i (t)|,

for M = 0, 1, 2, ... and i = 1, 2.

N is a fixed number and xN,M
i (t) is the approximate value of xi(t). In Tables

2 and 3 it is shown that by increasing M, the number of fixed decimal digits

increases and so does the maximum errors of EN,M+1
i → 0 for i = 1, 2. In this

example we have E4,9
i ≤ 3× 10−12.

5. Conclusion

This paper has presented a state- and input-delay dependent stabilization

criterion for a system with both state and input delays that employs a memo-

ryless state feedback control law. The stability is obtained by using the Lya-

punovKrasovskii functional approach. A new sufficient condition for delay-

dependent systems is given in matrix inequality form. Then, we present a

highly accurate method to solve the time delay systems. The hybrid of block-

pulse functions and Legendre polynomials and the associated operational ma-

trix of integration P are applied to solve the time-delay systems. The matrix P

has many zeros; hence, the method is computationally attractive. The method

is based upon reducing the system into a set of algebraic equations. By using

collocation method, the coefficients of the hybrid functions are obtained. The

method proposed in this paper can be easily applied to several engineering

problems.
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