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Abstract. Finite tight frames have many applications and some inter-

esting physical interpretations. One of the important subjects in this area

is the ways for constructing such frames. In this article we give a concrete

method for constructing finite normalized frames using Platonic solids.
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1. Introduction

Frames were first introduced in 1952 by Duffin and Sheafer [5] in the context

of nonharmonic Fourier series. Theory of frames have developed very fast in last

two decades. This is because they provide powerful tools in various area such

as signal processing, data compression, wireless communications etc.[7,9,10].

Also they have been studied from pure settings [8]. Frames are systems of

vectors in Hilbert spaces that provide robust, stable and mostly non-unique

representations of vectors. Recently, frames in finite - dimensional Hilbert

spaces have been of interests for many of researchers because of their nice

interpretations and useful applications[1,2,4]. One of the important subjects

in this area is the ways for constructing such frames. A few methods are
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introduced by some authors as in [3] and [6]. In this article we give an explicit

and concrete method for constructing such frames using regular polyhedrons

known as ”Platonic solids”. For this purpose, in the next section we introduce

the basis of the frame theory and some related topics. In the last section, we

give our main results which is the method for constructing finite normalized

tight frames using Platonic solids.

2. Frames

Let H be a Hilbert space. A sequence {fi}i∈I in H is said to be a frame

for H if there exist constants A and B such that 0 < A ≤ B < ∞ and the

inequalities

A ‖ f ‖2≤
∑
i∈I

|〈f, fi〉|2 ≤ B ‖ f ‖2,

holds for every f in H . If only the right side of the above inequalities holds,

then {fi}i∈I is called a Bessel sequence. Constants A and B are called lower

and upper frame bounds, respectively. The frame {fi}i∈I is said to be tight (or

A-tight)if A = B, and it is a Parseval frame if A = B = 1. In this case, A is

said to be the frame constant. When the index set I is a finite set, the frame

will be called finite. A normalized frame is the one whose elements have norm

one.

To each Bessel sequence {fi}i∈I , corresponds an operator

F : H → l2(I), F (f) = {〈f, fi〉}i∈I

called analysis operator, where l2(I) is the space of all complex sequences

{ci}i∈I such that
∑

i∈I |ci|2 < ∞. This is a well-defined and bounded operator.

Its adjoint is the operator

F ∗ : l2(I) → H, F ∗({ci}i∈I) =
∑
i∈I

cifi,

called the synthesis operator. If {fi}i∈I is a frame with frame bounds A and

B, then the operator

F ∗F : H → H, F ∗F (f) =
∑
i∈I

〈f, fi〉fi

is called the frame operator of the frame {fi}i∈I . It is a positive, self-adjoint,

bounded and hence invertible operator with the inverse (F ∗F )−1 . In fact,

AI ≤ F ∗F ≤ BI and B−1I ≤ (F ∗F )−1 ≤ A−1I.

If {gi} is another sequence in H such that each f ∈ H can be represented as

f =
∑

i∈I〈f, fi〉gi, then {gi}i∈I is called a dual frame for {fi}i∈I . It can be

shown that {(F ∗F )−1(fi)}i∈I is a dual frame for the frame {fi}i∈I , called the

canonical dual of {fi}i∈I . Having this dual, we get the following reconstruction

formula:

f = F ∗F (F ∗F )−1(f) =
∑
i∈I

〈f, (F ∗F )−1fi〉fi.
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If {fi}i∈I is a tight frame, i.e. A = B, then F ∗F = AI and hence we have

f = 1
A

∑
i〈f, fi〉fi, for every f ∈ H.

For the rest of this article, we suppose that H = HN is a finite-dimensional

Hilbert space. According to this, our frame will be of the form {fi}Mi=1, where

M is some positive integer. Also we will replace l2(I) by KM , where K = R,

or K = C.

Lemma 2.1. Every finite sequence {fi}Mi=1 in the Hilbert space HN is a Bessel

sequence.

Proof. Put B =
∑M

i=1 ‖ fi ‖2 . Since |〈f, fi〉|2 ≤‖ f ‖‖ fi ‖2, so
M∑
i

|〈f, fi〉|2 ≤
M∑
i=1

‖ f ‖2‖ fi ‖2≤ B ‖ f ‖2 . �

The above lemma guarantees the existence of the analysis and synthesis

operator in the finite case. In fact,

F : HN → KM , F ∗ : KM → HN , F ∗F : HN → HN .

These operators, from left to right, can be showed by M × N, N × M, and

N × N matrices, respectively. By considering an orthonormal basis for HN ,

we get an explicit structure for analysis and synthesis operators when dealing

with a frame. Let {en}Nn=1 be an orthonormal basis for HN . The coordinates

of a vector h ∈ HN with respect to this basis is the column vector [h] so that

[h] ∈ KN and [h](n) = 〈h, en〉. So, when {fm}Mm=1 is a frame, the matrix

representation of the synthesis and analysis operators with respect to the basis

{en}Nn=1 and the standard basis for KN ,will be as below:

[F ] =

⎛
⎜⎜⎜⎝

[f1]
∗

[f2]
∗

...

[fM ]∗

⎞
⎟⎟⎟⎠ , [F ∗] = [F ]∗ =

(
[f1] [f2] . . . [fM ]

)
.

So,

[F ] =

⎛
⎜⎜⎜⎝

〈e1, f1〉, . . . 〈eN , f1〉
〈e1, f2〉, . . . 〈en, f2〉

...
...

〈e1, fM 〉, . . . 〈eN , fM 〉

⎞
⎟⎟⎟⎠ and [F ]∗ =

⎛
⎜⎜⎜⎝

〈f1, e1〉 . . . 〈fM , e1〉
〈f1, e2〉 . . . 〈fM , e2〉

...
...

〈f1, eN 〉 . . . 〈fm, en〉

⎞
⎟⎟⎟⎠ .

A finite normalized tight frame with the frame constant A will be called an

A-FNTF. Benedetto and Fickus [1] proved the following result.

Theorem 2.2. If {xn}Nn=1 is an A-FNTF for a d-dimensional Hilbert space

H, then A = N
d .
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Examples 2.3. a) Consider the following four vectors in R3:

f1 =

⎛
⎝
2

1

0

⎞
⎠ , f2 =

⎛
⎝
0

1

1

⎞
⎠ , f3 =

⎛
⎝
1

0

1

⎞
⎠ , f4 =

⎛
⎝
−1

0

1

⎞
⎠ .

Clearly they form a frame for R3. Its synthesis, analysis and frame operators

are:

[F ]∗ =

⎛
⎝
2 0 1 −1

1 1 0 0

0 1 1 1

⎞
⎠ , [F ] =

⎛
⎜⎜⎝

2 1 0

0 1 1

1 0 1

−1 0 1

⎞
⎟⎟⎠ , [F ∗F ] =

⎛
⎝
6 2 0

2 2 1

0 1 3

⎞
⎠ .

Since F ∗F is not a multiple of identity, this is not a tight frame.

b) Consider the following set of vectors in R3:

{
⎛
⎝
1

1

1

⎞
⎠ ,

⎛
⎝
−1

1

−1

⎞
⎠ ,

⎛
⎝
−1

−1

1

⎞
⎠ ,

⎛
⎝

1

−1

−1

⎞
⎠}

Again this set of vectors is a frame for R3 whose corresponding operators are

[F ∗] =

⎛
⎝
1 −1 −1 1

1 1 −1 −1

1 −1 1 −1

⎞
⎠ , [F ] =

⎛
⎜⎜⎝

1 1 1

−1 1 −1

−1 −1 1

1 −1 −1

⎞
⎟⎟⎠ , [F ∗F ] =

⎛
⎝
4 0 0

0 4 0

0 0 4

⎞
⎠ .

Since [F ∗F ] = 4I, this is an A-tight frame with A = 4, but by the above theorem

it is not anA-FNTF because A 	= 4
3 .

3. The Platonic Solids

A Platonic solid is a convex polyhedron that is regular, in the sense of a reg-

ular polygon. Specifically, the faces of a Platonic solid are congruent regular

polygons, with the same number of faces meeting at each vertex; thus, all its

edges are congruent, as are its vertices and angles. There are precisely five Pla-

tonic solids: Tetrahedron, Cube (or hexahedron), Octahedron, Dodecahedron

and Icosahedron. The following theorem is our main result in this article.

Theorem 3.1. Vertices of each of the Platonic solids form an A-FNTF for

R3.

Proof. (i) (Tetrahedron):To show that vertices of tetrahedron form an A-

FNTF for R3, first we consider the third roots of the unity

(1, 0), , (−1

2
,

√
3

2
), (−1

2
,−

√
3

2
).

These three points are vertices of an equilateral triangle. Now we translate√
x times of these point as

√
1− x into the space to get three new points.
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These points are located on the surface of S2, the unit sphere in R3. To have

a tetrahedron, we need another point. Let this point be shown as (y1, y2, y3).

Now according the discussions after Lemma 2.1,

F ∗ =

⎛
⎜⎝

√
x −

√
x
2 −

√
x
2 y1

0
√
3x
2 −

√
3x
2 y2√

1− x
√
1− x

√
1− x y3

⎞
⎟⎠ .

In order that these four vectors form a tight frame for R3, we should have

F ∗F = AI and Theorem 2.3 forces that A = 4
3 . For this happens, the following

equations should hold:

x+ x
4 + x

4 + y21 = 4
3 ,

3x
4 + 3x

4 + y22 = 4
3 ,

3− 3x+ y23 = 4
3 ,

which imply that
3
2x+ y21 = 4

3 ,
3
2x+ y22 = 4

3 ,

3− 3x+ y23 = 4
3 .

From the first and the second equations it follows that y21 = y22, and also from

the equation F ∗F = 4
3I it follows that

y1y2 = 0, y1y3 = 0, y3y2 = 0.

These equations together imply that y1 = y2 = 0. Hence 3
2x = 4

3 which implies

x = 8
9 . So y23 = 1 and by choosing y3 = −1 we will get the following four

vectors: ⎛
⎜⎝

√
8
3

0
1
3

⎞
⎟⎠ ,

⎛
⎜⎝
−

√
2
3√
2
3

1
3

⎞
⎟⎠ ,

⎛
⎜⎝

−
√
2
3

−
√

2
3

1
3

⎞
⎟⎠ ,

⎛
⎝

0

0

−1

⎞
⎠ .

It can be checked easily that this points are the vertices of a tetrahedron and

form an A-FNTF for R3.
(ii)(Hexahedron): Consider the fourth roots of the unity which are

(1, 0), (0, 1), (−1, 0), (0,−1). Then translate
√
x times of these points first as√

1− x and next as −√
1− x into the space. With these operations, we get

eight vectors in R3. To be a tight frame, this set of vectors should be so that
F ∗F = 8

3I where

F
∗
=

⎛
⎝

√
x 0 0 −√

x
√
x 0 0 −√

x

0
√
x −√

x 0 0
√
x −√

x 0√
1 − x

√
1 − x

√
1 − x

√
1 − x −√

1 − x −√
1 − x −√

1 − x −√
1 − x

⎞
⎠ .

A simple calculation as in the case (i) shows that x = 2
3 . By this value of x,

these eight vectors become vertices of a hexahedron and form an A − FNTF

for R3 with A = 8
3 .

(iii) (Octahedron): As the previous case, first consider the fourth roots of the

unity and then by adding the third component 0 to each of them, assume them

as points in R3: (1, 0, 0), (0, 1, 0), (−1, 0, 0), (0,−1, 0). These are four vertices of
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the octahedron. the two other vertices are (0, 0, 1) and (0, 0,−1). It can easily

be checked that this set of vectors form an A-FNTF for R3 with A = 2I, that

is F ∗F = 2I where

F ∗ =

⎛
⎝
1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 0 0 1 −1

⎞
⎠ .

(iv)(Dodecahedron): This polygon has twenty vertices. To find these points

in R3, we consider the fifth roots of the unity in the plane: These are points

as e
2πik

5 where k = 0, 1, 2, 3, 4. In fact they are points with the coordinates

(1, 0), (cos 2πi
5 , sin 2πi

5 ), (cos 4πi
5 , sin 4πi

5 ), (cos 6πi
5 , sin 6πi

5 ), (cos 8πi
5 , sin 8πi

5 ). At the

first step, once we translate
√
x times of these points as

√
1− x and again trans-

late
√
y times of them as

√
1− y. After finding values of x and y, ten vertices

of the dodecahedron will denote. At the second step,first we rotate those roots

as π
5 on the plane.Then, as before, once we translate

√
x times of these recent

points as −√
1− x and again

√
y times of them as −√

1− y. So we get the

following set of twenty vectors in R3:⎛
⎜⎝

√
x

0√
1− x

⎞
⎟⎠ ,

⎛
⎜⎝
√
x cos 2π

5√
x sin 2π

5√
1− x

⎞
⎟⎠ ,

⎛
⎜⎝
−√

x cos π
5√

x sin π
5√

1− x

⎞
⎟⎠ ,

⎛
⎜⎝
−√

x cos π
5

−√
x sin π

5√
1− x

⎞
⎟⎠ ,

⎛
⎜⎝

√
x cos 2π

5

−√
x sin 2π

5√
1− x

⎞
⎟⎠ ,

⎛
⎜⎝

√
y

0√
1− y

⎞
⎟⎠ ,

⎛
⎜⎝
√
y cos 2π

5√
y sin 2π

5√
1− y

⎞
⎟⎠ ,

⎛
⎜⎝
−√

y cos π
5√

y sin π
5√

1− y

⎞
⎟⎠ ,

⎛
⎜⎝
−√

y cos π
5

−√
y sin π

5√
1− y

⎞
⎟⎠ ,

⎛
⎜⎝

√
y cos 2π

5

−√
y sin 2π

5√
1− y

⎞
⎟⎠ ,

⎛
⎜⎝
√
x cos π

5√
x sin π

5

−√
1− x

⎞
⎟⎠ ,

⎛
⎜⎝
−√

x cos 2π
5√

x sin 2π
5

−√
1− x

⎞
⎟⎠ ,

⎛
⎜⎝

−√
x

0

−√
1− x

⎞
⎟⎠ ,

⎛
⎜⎝
−√

x cos 2π
5

−√
x sin 2π

5

−√
1− x

⎞
⎟⎠ ,

⎛
⎜⎝

√
x cos π

5

−√
x sin π

5

−√
1− x

⎞
⎟⎠ ,

⎛
⎜⎝
√
y cos π

5√
y sin π

5

−√
1− y

⎞
⎟⎠ ,

⎛
⎜⎝
−√

y cos 2π
5√

y sin 2π
5

−√
1− y

⎞
⎟⎠ ,

⎛
⎜⎝

−√
y

0

−√
1− y

⎞
⎟⎠ ,

⎛
⎜⎝
−√

y cos 2π
5

−√
y sin 2π

5

−√
1− y

⎞
⎟⎠ ,

⎛
⎜⎝

√
y cos π

5

−√
y sin π

5

−√
1− y

⎞
⎟⎠ .

These vectors form the columns of the matrix F ∗. To be an A- FNTF, it is

necesary that F ∗F = 20
3 I. This will happen if

(1) x+ y =
4

3
.

On the other hand, in order that these points are vertices of a dodecahedron, the

distance between two points (
√
x, 0,

√
1− x) and (

√
x cos π

5 ,
√
x sin π

5 ,−
√
1− x)

should be equal to that of the points (
√
y cos π

5 ,
√
y sin π

5 ,−
√
1− y) and

(−√
y cos 2π

5 ,
√
y sin 2π

5 ,−√
1− y). Thus

(2) −x(1 + cos
π

5
) + 2 = y(1 + cos

3π

5
).

By putting the value of x from (1) into (2), we get

(y − 4

3
)(1 + cos

π

5
) + 2 = y + y cos

3π

5
,



Constructing Finite Frames via Platonic Solids 41

which implies

y = 0.368524268, x = 0.964809064.

By substituting these values of x and y in the components of the desired vectors,

it can easily be checked that these points are vertices of a dodecahedron.

(v) (Icosahedron) As in the case of dodecahedron, we start with the fifth

roots of the unity. We translate
√
x times of these points as

√
1− x into the

space. Again, after rotating those roots as π
5 on the plane, translating

√
x

times of them as −√
1− x gives us five other points. By adding two extra

points (0, 0, 1) and (0, 0,−1), we get the following set of twelve vectors in R3:

⎛
⎝

√
x

0√
1− x

⎞
⎠ ,

⎛
⎝
√
x cos 2π

5√
x sin 2π

5√
1− x

⎞
⎠ ,

⎛
⎝
−√

x cos π
5√

x sin π
5√

1− x

⎞
⎠ ,

⎛
⎝
−√

x cos π
5

−√
x sin π

5√
1− x

⎞
⎠ ,

⎛
⎝

√
x cos 2π

5

−√
x sin 2π

5√
1− x

⎞
⎠ ,

⎛
⎝
0

0

1

⎞
⎠ ,

⎛
⎝

√
x cos π

5√
x sin π

5

−√
1− x

⎞
⎠ ,

⎛
⎝
−√

x cos 2π
5√

x sin 2π
5

−√
1− x

⎞
⎠ ,

⎛
⎝

−√
x

0

−√
1− x

⎞
⎠ ,

⎛
⎝
−√

x cos 2π
5

−√
x sin π

5

−√
1− x

⎞
⎠ ,

⎛
⎝

√
x cos 2π

5

−√
x sin 2π

5

−√
1− x

⎞
⎠ ,

⎛
⎝

0

0

−1

⎞
⎠

These vectors form a frame for R3 for suitable values of x. To be an A-FNTF,

we should have F ∗F = 4I. This implies the equation 10(1− x) + 2 = 4 which

leads to x = 4
5 . By this value of x, it is easy to check that the desired points

are vertices of the icosahedron.
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