The Hyper-Wiener Polynomial of Graphs

G. H. Fath-Tabar and A. R. Ashrafi*
Department of Mathematics, Faculty of Science, University of Kashan, Kashan, 87317-51167, Iran
E-mail: gh.fathtabar@gmail.com
E-mail: ashrafi@kashanu.ac.ir

Abstract

The distance $d(u, v)$ between two vertices u and v of a graph G is equal to the length of a shortest path that connects u and v. Define $W W(G, x)=1 / 2 \sum_{\{a, b\} \subseteq V(G)} x^{d(a, b)+d^{2}(a, b)}$, where $d(G)$ is the greatest distance between any two vertices. In this paper the hyper-Wiener polynomials of the Cartesian product, composition, join and disjunction of graphs are computed.

Keywords: Hyper-Wiener polynomial, graph operation.

2000 Mathematics subject classification: $05 \mathrm{C} 12,05 \mathrm{~A} 15,05 \mathrm{~A} 20,05 \mathrm{C} 05$.

1. Introduction

All graphs we consider are assumed to be finite, connected, and to have no loops or multiple edges. The vertex and the edge sets of a graph G are denoted by $V(G)$ and $E(G)$, respectively. The distance between any two vertices u and v in $V(G)$ is denoted by $d(u, v)$ and it is defined as the number of edges in a minimal path connecting the vertices u and v. The greatest distance between any two vertices of G is called diameter of G. It is denoted by $d(G)$. The Wiener index is one of the most studied topological indices defined as the sum of distances between all pairs of vertices of the respective graph, $[5-8,22]$. In 1993, Milan Randić proposed a generalization of the Wiener index for trees. Then Klein et al. [18], generalized the Randić's definition for all connected

[^0]graphs. It is defined as $W W(G)=\frac{1}{2} W(G)+\frac{1}{2} \sum_{\{u, v\} \subseteq V(G)} d^{2}(u, v)$, where $d^{2}(u, v)=d(u, v)^{2}$.

The Cartesian product $G \times H$ of graphs G and H has the vertex set $V(G \times$ $H)=V(G) \times V(H)$ and $(a, x)(b, y)$ is an edge of $G \times H$ if $a=b$ and $x y \in E(H)$, or $a b \in E(G)$ and $x=y$. If G_{1}, \cdots, G_{n} are graphs then we denote $G_{1} \times \cdots \times G_{n}$ by $\bigotimes_{i=1}^{n} G_{i}$. In the case that $G_{1}=\ldots=G_{n}=G$, we denote $\bigotimes_{i=1}^{n} G_{i}$ by G^{n}. The hypercube Q_{n} and the ladder graph L_{n} are defined as the Cartesian product of n copies of K_{2} and $K_{2} \times P_{n}$, respectively. Let G and H be two graphs with disjoint vertex sets $V(G)$ and $V(H)$ and edge sets $E(G)$ and $E(H)$. The join $G+H$ is the graph with vertex set $V(G+H)=V(G) \cup V(H)$ together with all the edges joining vertices $V(G)$ and $V(H)$. If $A=\underbrace{H+\cdots+H}_{n \text { times }}$,
then we denote A by $n H$. The composition $G[H]$ is the graph with vertex set $V(G) \times V(H)$ and $u=(u, v)$ is adjacent with $v=(a, b)$ whenever $(u$ is adjacent with a) or ($u=a$ and v is adjacent with b), see [10, p. 22].

The power graph $G^{(k)}$ of graph G has vertex set $V\left(G^{(k)}\right)=V(G)$ and $x y \in E\left(G^{(k)}\right)$ if $d_{G}(x, y) \leq k$.

Consider two arbitrary graphs G and H. The disjunction $G \vee H$ is the graph with vertex set $V(G) \times V(H)$ and $\left(u_{1}, v_{1}\right)$ is adjacent with $\left(u_{2}, v_{2}\right)$ whenever $u_{1} u_{2} \in E(G)$ or $v_{1} v_{2} \in E(H)$.

The Wiener index of the Cartesian product graphs was studied in [9, 20]. Klavžar, et al. [15] computed the Szeged index of the Cartesian product graphs and one of us (ARA) computed exact formulae for the vertex PI, edge PI, first Zagreb, second Zagreb, hyper-Wiener and edge Szeged indices of Cartesian product, composition, join, disjunction and symmetric difference of graphs, see [11-14, 23] for details.

Sagan et al. [20] computed exact expressions for the Wiener polynomial of various graph operations. The aim of this paper is to continue this program by computing the hyper-Wiener index of these operations on graphs.

We encourage the reader to consult $[2-4]$ and $[16,17,19,24]$ for the mathematical properties of hyper-Wiener index and its applications in chemistry. We state without proof the following theorem which is crucial throughout the paper.

Theorem 1-1. Let G and H be graphs. Then we have:
(a) $|V(G \times H)|=|V(G \vee H)|=|V(G[H])|=|V(G \oplus H)|=|V(G)||V(H)|$ and $|E(G \times H)|=|E(G)||V(H)|+|V(G)||E(H)|$,
(b) $G \times H$ is connected if and only if G and H are connected,
(c) If (a, x) and (b, y) are vertices of $G \times H$ then $d_{G \times H}((a, x),(b, y))=$ $d_{G}(a, b)+d_{H}(x, y)$,
(d) The Cartesian product, join, composition, disjunction and symmetric difference of graphs are associative and all of them are commutative except for composition.
(e) If G is connected and $|V(G)|>1$ then for every vertices $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in$ $V(G[H])$ we have:

$$
d_{G[H]}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)= \begin{cases}d_{G}\left(u_{1}, u_{2}\right) & u_{1} \neq u_{2} \\ 0 & u_{1}=u_{2} \& v_{1}=v_{2} \\ 1 & u_{1}=u_{2} \& v_{1} v_{2} \in E(H) \\ 2 & u_{1}=u_{2} \& v_{1} v_{2} \notin E(H)\end{cases}
$$

(f) $\quad d_{G+H}(u, v)=\left\{\begin{array}{ll}0 & u=v \\ 1 & u v \in E(G) \cup E(H) \text { or }(u \in V(G) \& v \in V(H)) . \\ 2 & \text { otherwise }\end{array}\right.$.
(g) If G and H are connected graphs then

$$
d_{G \oplus H}((a, b),(c, d))= \begin{cases}0 & a=c \& b=d \\ 1 & a c \in E(G) \text { or } b d \in E(H) \text { but not both } \\ 2 & \text { otherwise }\end{cases}
$$

(h) If G and H are connected graphs then

$$
d_{G \vee H}((a, b),(c, d))= \begin{cases}0 & a=c \& b=d \\ 1 & a c \in E(G) \text { or } b d \in E(H) \\ 2 & \text { otherwise }\end{cases}
$$

Definition 1-2. Let G be a graph. The hyper-Wiener polynomial of G is defined as $W W(G, x)=\frac{1}{2} \sum_{\{a, b\} \subseteq V(G)} x^{d(a, b)+d^{2}(a, b)}$.

It is easy to see that $W W^{\prime}(G, 1)=W W(G), W W(G, 1)=\binom{n}{2}$ and $W W(G, x)=$ $\sum_{j=1}^{d(G)} n_{G}(j) x^{j(j+1)}$, where $n_{G}(j)=\{\{a, b\} \mid d(a, b)=j\}$.

Lemma 1-3. (a) $W W\left(K_{n}, x\right)=\binom{n}{2} x^{2}$.
(b) $W W\left(P_{n}, x\right)=\sum_{j=1}^{n-1}(n-j) x^{j(j+1)}$.
(c) $W W\left(C_{n}, x\right)=\left\{\begin{array}{lc}\sum_{j=1}^{\frac{n}{2}-1} n x^{j(j+1)}+\frac{n}{2} x^{n(n+2) / 4} & \mathrm{n} \text { is even } \\ \sum_{j=1}^{\frac{n+1}{2}} x^{j(j+1)} & \mathrm{n} \text { is odd }\end{array}\right.$.
(d) $W W\left(L_{n}, x\right)=(3 n-2) x^{2}+\sum_{k=2}^{n}(2 k-3) x^{(n-k-2)(n-k-1)}$.
(e) $W W\left(Q_{n}, x\right)=\sum_{k=1}^{n}\binom{n}{k} x^{k(k+1)}$.

Throughout this paper our notation is standard and taken mainly from the standard books of graph theory and $[4,21] . K_{n}, P_{n}, C_{n}$ denote the complete graph, The path and the cycle on n vertices respectively. For a real number x, $[x]$ denotes the greatest integer less than or equal to x.

2. Main Results

In this section, exact expressions for the hyper-Wiener polynomials of composition, Cartesian product, join, disjunction symmetric difference and power of graphs are computed.

Theorem 2-1. Suppose G_{1} and G_{2} are graphs with $\left|V\left(G_{1}\right)\right|=n_{1},\left|V\left(G_{2}\right)\right|=$ $n_{2},\left|E\left(G_{1}\right)\right|=m_{1}$ and $\left|E\left(G_{2}\right)\right|=m_{2}$. If G_{1} is connected then $W W\left(G_{1}\left[G_{2}\right], x\right)=$ $n_{2}^{2} W W\left(G_{1}, x\right)+\frac{1}{2} n_{2} m_{2} x^{2}+\frac{1}{2} n_{1}\left(\binom{n_{2}}{2}-m_{2}\right) x^{6}$.

Proof. By Theorem 1-1(e),

$$
\begin{aligned}
W W\left(G_{1}\left[G_{2}\right], x\right) & =\frac{1}{2} \sum_{\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right\}} x^{d_{G_{1}\left[G_{2}\right]}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)+d_{G_{1}\left[G_{2}\right]}^{2}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)} \\
& =\frac{1}{2} \sum_{u_{1} \neq u_{2}} x^{d_{G_{1}\left[G_{2}\right]}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)+d_{G_{1}\left[G_{2}\right]}^{2}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)} \\
& +\frac{1}{2} \sum_{\substack{v_{1} v_{2} \in E\left(G_{2}\right) \\
u_{1}=u_{2}}} x^{2}+\frac{1}{2} \sum_{\substack{v_{1} v_{2} \notin E\left(G_{2}\right) \\
u_{1}=u_{2}}} x^{6} \\
& =\frac{1}{2} \sum_{u_{1} \neq u_{2}} n_{2}^{2} x^{d_{G_{1}}\left(u_{1}, u_{2}\right)+d_{G_{1}}^{2}\left(u_{1}, u_{2}\right)}+\frac{1}{2} n_{1} m_{2} x^{2} \\
& +\frac{1}{2} n_{1}\left(\binom{n_{2}}{2}-m_{2}\right) x^{6} \\
& =n_{2}^{2} W W\left(G_{1}, x\right)+\frac{1}{2} n_{2} m_{2} x^{2}+\frac{1}{2} n_{1}\left(\binom{n_{2}}{2}-m_{2}\right) x^{6} .
\end{aligned}
$$

Theorem 2-2. Let G and H be graphs with $n_{1}=|V(G)|, n_{2}=|V(H)|$, $m_{1}=|E(G)|$ and $m_{2}=|E(H)|$. Then
$W W(G \vee H, x)=\frac{1}{2}\left(n_{1}^{2} m_{2}+n_{2}^{2} m_{1}-2 m_{1} m_{2}\right) x^{2}+\frac{1}{2}\left[\binom{n_{1} n_{2}}{2}-n_{1}^{2} m_{2}-n_{2}^{2} m_{1}+2 m_{1} m_{2}\right] x^{6}$.
Proof. The proof is straightforward and follows from Lemma 1-1(h).
Theorem 2-3. Let G and H be graphs with $n_{1}=|V(G)|, n_{2}=|V(H)|$, $m_{1}=|E(G)|$ and $m_{2}=|E(H)|$. Then
$W W(G \oplus H, x)=\frac{1}{2}\left(n_{1}^{2} m_{2}+n_{2}^{2} m_{1}-4 m_{1} m_{2}\right) x^{2}+\frac{1}{2}\left[\binom{n_{1} n_{2}}{2}-n_{1}^{2} m_{2}-n_{2}^{2} m_{1}+4 m_{1} m_{2}\right] x^{6}$.
Proof. The proof is straightforward and follows from Lemma 1-1 (g).
Theorem 2-4. Let $G_{1}, G_{2}, \cdots, G_{k}$ be graphs with $n_{i}=\left|V\left(G_{i}\right)\right|$ and $m_{i}=$ $\left|E\left(G_{i}\right)\right|, 1 \leq i \leq k$. Then
$W W\left(G_{1}+G_{2}+\cdots+G_{n}\right)=\frac{1}{2}\left[\sum_{i=1}^{k} m_{i}+\sum_{i \neq j} n_{i} n_{j}\right] x^{2}+\frac{1}{2} \sum_{i=1}^{k}\left[\binom{n_{i}}{2}-m_{i}\right] x^{6}$.

In particular, if G is a graph with n vertices and m edges then $W W(k G, x)=$ $\frac{1}{2}\left[k m+\binom{k}{2} n^{2}\right] x^{2}+\frac{1}{2}\left[\binom{n}{2}-m\right] x^{6}$.

Proof. By Lemma 1-1(f), we have $W W\left(G_{1}+G_{2}, x\right)=\frac{1}{2} \sum_{u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)} x^{2}$ $+\frac{1}{2} \sum_{u v \in E\left(G_{1}\right)} x^{2}+\frac{1}{2} \sum_{u v \in E\left(G_{2}\right)} x^{2}+\frac{1}{2} \sum_{u v \notin E\left(G_{1}\right)} x^{6}+\frac{1}{2} \sum_{u v \notin E\left(G_{2}\right)} x^{6}=$ $\frac{1}{2}\left[n_{1} n_{2}+m_{1}+m_{2}\right] x^{2}+\frac{1}{2}\left[\binom{n_{1}}{2}+\binom{n_{2}}{2}-m_{1}-m_{2}\right] x^{6}$. We now apply an inductive argument to complete the proof.

Corollary 2-5. The following equations hold:
a) $W W\left(W_{n+1}, x\right)=n x^{2}+\frac{1}{2}\left[\binom{n}{2}-n\right] x^{6}$,
b) $W W\left(S_{n+1}, x\right)=\frac{1}{2} n x^{2}+\frac{1}{2}\binom{n}{2} x^{6}$,
c) $W W\left(K_{n_{1}, n_{2}, \cdots, n_{k}}, x\right)=\frac{1}{2}\binom{k}{2} x^{2}+\frac{1}{2}\left[\sum_{i=1}^{k}\binom{n_{i}}{2}\right] x^{6}$,
d) $\left.W W\left(C_{n}+C_{n}\right), x\right)=\frac{1}{2}\left(2 n+n^{2}\right) x^{2}+\left[\binom{n}{2}-n\right] x^{6}$

Theorem 2-6. Suppose G and H are graphs and $d=d(G)+d(H)$. Then
$W W(G \times H, x)=\frac{1}{2} \sum_{k=1}^{d}\left[\sum_{j=1}^{k-1} 2 n_{G}(j) n_{H}(k-j)+\mid\left(V(G)\left|n_{H}(k)+|V(H)| n_{G}(k)\right] x^{k(k+1)}\right.\right.$,
where $n_{G}(k)$ denotes the number of pairs in G with distance k. The quantity $n_{H}(k)$ is defined analogously.

Proof. By Lemma 1-1(a), we have $d_{G \times H}((a, x),(b, y))=d_{G}(a, b)+d_{H}(x, y)$. Thus,

$$
\begin{aligned}
n_{G \times H}(k) & =\left|\left\{\{(a, x),(b, y)\} \mid d_{G \times H}((a, x),(b, y))=k\right\}\right| \\
& =\left|\left\{\{(a, x),(b, y)\} \mid d_{G}(a, b)+d_{H}(a, x)=k\right\}\right| \\
& \left.=\mid\left\{\{(a, x),(b, y)\} \mid d_{G}(a, b)=j, d_{H}(x, y)\right)=k-j, j=0,1, \cdots k\right\} \mid \\
& =\sum_{j=0}^{k} 2 n_{G}(j) n_{H}(k-j) \\
& =|V(G)| n_{H}(k)+|V(H)| n_{G}(k)+\sum_{j=1}^{k-1} 2 n_{G}(j) n_{H}(k-j),
\end{aligned}
$$

which completes the proof.
Theorem 2-7. Let G be a graph then the hyper Wiener polynomial of $G^{(k)}$ is given by

$$
\begin{aligned}
W W\left(G^{(k)}\right) & =\sum_{i=0}^{[n / k]-1} \sum_{j=1}^{k} n_{G}(j+i k) x^{(i+1)(i+2)} \\
& +\left(n_{G}(1+[n / k] k)+\cdots+n_{G}(n)\right) x^{([n / k]+1)([n / k]+2)}
\end{aligned}
$$

where $n \geq k$, and $n_{G}(n+1)=n_{G}(n+2)=\cdots=0$. If $k \mid n$ then the hyper Wiener polynomial of G^{k} becomes $\sum_{i=1}^{[n / k]} \sum_{(i-1) k+1 \leq j \leq i k} n_{G}(j) x^{i(i+1)}$.

Proof. By definition of the power graph $G^{(k)}, V\left(G^{(k)}\right)=V(G)$ and for every vertex $a, b \in V(G) a$ and b are adjacent if and only if $d_{G}(a, b) \leq k$. There are $n_{G}(1)$ pair of vertices at distance 1 (edges), $n_{G}(2)$ vertices at distance $2, \cdots$ and, $n_{G}(k)$ vertices that are at distance k. These vertices become at distance one in $G^{(k)}$. Hence the coefficient of x is $\sum_{j=1}^{k} n_{G}(j)$ in G^{k}. One can generalize this idea by taking the distinct pairs of vertices in G whose distances are in the set $A_{i}=\{i k+j, j=1,2, \ldots, k\}$, where $0 \leq i \leq[n / k]-1$. There are $n_{G}(i k+1)+\cdots+n_{G}(i k+k)$ distinct pairs of vertices in G whose distances are in A_{i}. These distinct pairs of vertices become at distance $i+1$ in $G^{(k)}$. Hence we have $n_{G}(i k+1)+\cdots+n_{G}(i k+k)$ distinct pairs of vertices in $G^{(k)}$ that are at distance $i+1$. This gives the hyper Wiener polynomial of G^{k}.

Corollary 2-8. The hyper Wiener polynomials of the graphs $P_{n}^{(k)}, C_{2 n+1}^{(k)}$, $C_{2 n}^{(k)}, L_{n}^{(k)}$ and $Q_{n}^{(k)}$ are given by the following polynomials:
$a \quad) \quad W W\left(P_{n}^{(k)} ; x\right)=\sum_{i=1}^{[(n-1) / k]} \frac{k}{2}(2 n-(2 i-1) k-1) x^{i(i+1)}$ $+\frac{1}{2}\left(n-1-\left[\frac{n-1}{k}\right] k\right)\left(n-\left[\frac{n-1}{k} k\right]\right) x^{\left(\left[\frac{n-1}{k}\right] k+1\right)\left(\left[\frac{n-1}{k}\right] k+2\right)}$,
$b \quad W W\left(C_{2 n+1}^{(k)} ; x\right)=\sum_{i=1}^{[n / k]}(2 n+1) k x^{i(i+1)}$

$$
+\quad\left(n-\left[\frac{n}{k}\right] k\right)(2 n+1) x^{([n / k]+1)([n / k]+2)}
$$

c) $W W\left(C_{2 n}^{(k)} ; x\right)=\sum_{i=1}^{\left[\frac{n-1}{k}\right]}(2 n) k q^{i(i+1)}$
$+\quad\left(n-\left[\frac{n-1}{k}\right] k\right)(2 n) x^{\left(\left[\frac{n-1}{k}\right]+1\right)\left(\left[\frac{n-1}{k}\right]+2\right)}$,
d) $W W\left(L_{n}^{(k)} ; x\right)=\frac{1}{2}\left[2 k(2 n-k)-n x^{2}\right.$
$\left.+\sum_{i=2}^{\left[\frac{n}{k}\right]} 2 k(2 n+(1-2 i) k) x^{i(i+1)}+2\left(n-\left[\frac{n}{k}\right] k\right)^{2} x^{([n / k]+1)\left(\left[\frac{n}{k}\right]+2\right)}\right]$,
$e \quad) \quad W W\left(Q_{n}^{(k)} ; x\right)=\sum_{i=0}^{\left[\frac{n}{k}\right]-1} \sum_{j=1}^{k}\binom{n}{j+i k} 2^{n-1} x^{i(i+1)}$
$\left.+\left(\binom{n}{1+k\left[\frac{n}{k}\right]}+\binom{n}{2+k\left[\frac{n}{k}\right]}+\cdots+\binom{n}{n}\right) x^{\left(\left[\frac{n}{k}\right]+1\right)\left(\left[\frac{n}{k}\right]+2\right.}\right)$.
Proof. a) By Theorem 2-2, the coefficient of $x^{i(i+1)}$ in $P_{n}^{(k)}$ is as follows:
$n-(i-1) k-1)+(n-(i-1) k-2)+\cdots+(n-i k)=\frac{k}{2}(2 n-(2 i-1) k-1)$.

Also, the coefficient of $x^{\left(\left[\frac{n-1}{k}\right]+1\right)\left(\left[\frac{n-1}{k}\right]+2\right)}$ is
$\left.\left(n-\left[\frac{n-1}{k}\right] k\right)\left(n-\left[\frac{n-1}{k}\right] k-1\right)\right)+\cdots+1=\frac{1}{2}\left(n-\left[\frac{n-1}{k}\right] k\right)\left(n-\left[\frac{n-1}{k}\right] k+1\right)$.
Proof of other parts are the same.
Corollary 2-9. The hyper Wiener indices of the graphs $P_{n}^{(k)}, C_{2 n+1}^{(k)}$, and $C_{2 n}^{(k)}$ are given by the following formulae:

$$
\begin{aligned}
a \quad & \quad W W\left(P_{n}^{(k)}\right)=\frac{k(k-1)}{2}\left[\frac{n-1}{k}\right]^{4}+\left(\frac{3}{2} k^{2}+\frac{2}{3} n-k n-\frac{5}{6} k-\frac{1}{3}\right)\left[\frac{n-1}{k}\right]^{3} \\
& +\quad\left(k^{2}+\frac{1}{2} n^{2}+k-1+\frac{3}{2} n-3 k n\right)\left[\frac{n-1}{k}\right]^{2} \\
& +\quad\left(k+\frac{3}{2} n^{2}-\frac{1}{6} n-2 k n-\frac{2}{3}\right)\left[\frac{n-1}{k}\right]-n \\
b \quad & \left.\quad W W\left(C_{2 n+1}^{(k)}\right)=\frac{-2}{3} k n\left(\left[\frac{n}{k}\right]+1\right)-\frac{1}{3} k\left(\left[\frac{n}{k}\right]+1\right)+\frac{2}{3}\right) k n\left(\left[\frac{n}{k}\right]+1\right)^{3} \\
& +\quad(1 / 3) k\left(\left[\frac{n}{k}+1\right)^{3}+\left(n-\left[\frac{n}{k}\right] k\right)(2 n+1)\left(\left[\frac{n}{k}\right]^{2}+3 \frac{n}{k}+2\right)\right. \\
c \quad & \quad W W\left(C_{2 n}^{(k)}\right)=\frac{-2}{3} k n\left(\left[\frac{n-1}{k}\right]+1\right) \\
& +\frac{2}{3} k n\left(\left[\frac{n-1}{k}\right]+1\right)^{3}+2\left(n-1-\left[\frac{n-1}{k}\right] k\right) n+n\left(\left[\frac{n-1}{k}\right]+1\right)\left(\left[\frac{n-1}{k}\right]+2\right)
\end{aligned}
$$

References

[1] O. A. AbuGhneim, H. Al-Ezeh and M. Al-Ezeh, The Wiener Polynomial of the kth Power Graph, Int. J. Math. Math. Sci., 2007, (2007), 1-6. doi: 10.1155/2007/24873
[2] G. G. Cash, Relationship Between the Hosoya Polynomial and the Hyper-Wiener Index, Appl. Math. Letters, 15, (2002), 893-895.
[3] G. G. Cash, Polynomial expressions for the hyper-Wiener index of extended hydrocarbon networks, Computers and Chemistry, 25, (2001), 577-582.
[4] M. V. Diudea, I. Gutman and L. Jantschi, Molecular Topology, Huntington, NY, 2001.
[5] A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math., 66, (2001), 211-249.
[6] A. A. Dobrynin, I. Gutman, S. Klavžar and P. Zigert., Wiener index of hexagonal systems, Acta Appl. Math., 72, (2002), 247-294.
[7] I. Gutman, A property of the Wiener number and its modifications, Indian J. Chem., 36A, (1997), 128-132.
[8] I. Gutman, Relation between hyper-Wiener and Wiener index, Chem. Phys. Letters, 364, (2002), 352-356.
[9] A. Graovac and T. Pisanski, On the Wiener index of a graph, J. Math. Chem., 8, (1991), 53-62.
[10] W. Imrich, S. Klavžar, Product graphs: structure and recognition, Wiley, New York, USA, 2000.
[11] M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, Vertex and Edge PI Indices of Cartesian Product Graphs, Disc. Appl. Math., 156, (2008), 1780-1789.
[12] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi and I. Gutman, The Edge Szeged Index of Product Graphs, Croat. Chem Acta, 81(2), (2008), 277-281.
[13] M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, A Matrix Method for Computing Szeged and Vertex PI Indices of Join and Composition of Graphs, Linear Algebra Appl., 429, (2008), 2702-2709.
[14] M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, The hyper-Wiener index of graph operations, Comput. Math. Appl., 56, (2008), 1402-1407.
[15] S. Klavžar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett., 9, (1996), 45-49.
[16] S. Klavžar, P. Žigert and I. Gutman, An algorithm for the calculation of the hyperWiener index of benzenoid hydrocarbons, Computers and Chemistry, 24, (2000), 229233.
[17] S. Klavžar and I. Gutman, A theorem on Wiener-type invariants for isometric subgraphs of hypercubes, Appl. Math. Letters, 19, (2006), 1129-1133.
[18] D. J. Klein, I. Lukovits and I. Gutman, On the definition of the hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci., 35, (1995), 50-52.
[19] X. Li and A. F. Jalbout, Bond order weighted hyper-Wiener index, J. Mol. Structure (Theochem), 634, (2003), 121-125.
[20] B. E. Sagan, Y.-N. Yeh and P. Zhang, The Wiener polynomial of a graph, Int. J. Quant. Chem., 60(5), (1996), 959-969.
[21] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL. 1992.
[22] H. Wiener, Structural determination of the paraffin boiling points, J. Am. Chem. Soc., 69, (1947), 17-20.
[23] H. Yousefi-Azari, B. Manoochehrian and A. R. Ashrafi, The PI index of product graphs, Appl. Math. Lett., 21, (2008), 624-627.
[24] B. Zhou and I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices, Chem. Phys. Letters, 394, (2004), 93-95.

[^0]: * Corresponding Author

 Received 2 October 2010; Accepted 25 April 2011
 (c)2011 Academic Center for Education, Culture and Research TMU

