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Abstract. The distance d(u, v) between two vertices u and v of a graph

G is equal to the length of a shortest path that connects u and v. Define

WW (G, x) = 1/2
∑

{a,b}⊆V (G) xd(a,b)+d2(a,b), where d(G) is the great-

est distance between any two vertices. In this paper the hyper-Wiener

polynomials of the Cartesian product, composition, join and disjunction

of graphs are computed.
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1. Introduction

All graphs we consider are assumed to be finite, connected, and to have no
loops or multiple edges. The vertex and the edge sets of a graph G are denoted
by V (G) and E(G), respectively. The distance between any two vertices u and
v in V (G) is denoted by d(u, v) and it is defined as the number of edges in a
minimal path connecting the vertices u and v. The greatest distance between
any two vertices of G is called diameter of G. It is denoted by d(G). The
Wiener index is one of the most studied topological indices defined as the sum
of distances between all pairs of vertices of the respective graph, [5− 8, 22]. In
1993, Milan Randić proposed a generalization of the Wiener index for trees.
Then Klein et al. [18], generalized the Randić’s definition for all connected
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graphs. It is defined as WW (G) = 1
2W (G) + 1

2

∑
{u,v}⊆V (G) d2(u, v), where

d2(u, v) = d(u, v)2.
The Cartesian product G×H of graphs G and H has the vertex set V (G×

H) = V (G)×V (H) and (a, x)(b, y) is an edge of G×H if a = b and xy ∈ E(H),
or ab ∈ E(G) and x = y. If G1, · · · , Gn are graphs then we denote G1×· · ·×Gn

by
⊗n

i=1 Gi. In the case that G1 = ... = Gn = G, we denote
⊗n

i=1 Gi by
Gn. The hypercube Qn and the ladder graph Ln are defined as the Cartesian
product of n copies of K2 and K2×Pn, respectively. Let G and H be two graphs
with disjoint vertex sets V (G) and V (H) and edge sets E(G) and E(H). The
join G + H is the graph with vertex set V (G + H) = V (G) ∪ V (H) together
with all the edges joining vertices V (G) and V (H). If A = H + · · · + H︸ ︷︷ ︸

n times

,

then we denote A by nH . The composition G[H ] is the graph with vertex set
V (G)×V (H) and u = (u, v) is adjacent with v = (a, b) whenever (u is adjacent
with a) or (u = a and v is adjacent with b), see [10, p. 22].

The power graph G(k) of graph G has vertex set V (G(k)) = V (G) and
xy ∈ E(G(k)) if dG(x, y) ≤ k.

Consider two arbitrary graphs G and H . The disjunction G∨H is the graph
with vertex set V (G) × V (H) and (u1, v1) is adjacent with (u2, v2) whenever
u1u2 ∈ E(G) or v1v2 ∈ E(H).

The Wiener index of the Cartesian product graphs was studied in [9, 20].
Klavžar, et al. [15] computed the Szeged index of the Cartesian product graphs
and one of us (ARA) computed exact formulae for the vertex PI, edge PI, first
Zagreb, second Zagreb, hyper-Wiener and edge Szeged indices of Cartesian
product, composition, join, disjunction and symmetric difference of graphs, see
[11 − 14, 23] for details.

Sagan et al. [20] computed exact expressions for the Wiener polynomial of
various graph operations. The aim of this paper is to continue this program by
computing the hyper-Wiener index of these operations on graphs.

We encourage the reader to consult [2− 4] and [16, 17, 19, 24] for the math-
ematical properties of hyper-Wiener index and its applications in chemistry.
We state without proof the following theorem which is crucial throughout the
paper.

Theorem 1-1. Let G and H be graphs. Then we have:
(a) |V (G × H)| = |V (G ∨ H)| = |V (G[H ])| = |V (G ⊕ H)| = |V (G)||V (H)|

and |E(G × H)| = |E(G)||V (H)| + |V (G)||E(H)|,
(b) G × H is connected if and only if G and H are connected,
(c) If (a, x) and (b, y) are vertices of G × H then dG×H((a, x), (b, y)) =

dG(a, b) + dH(x, y),
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(d) The Cartesian product, join, composition, disjunction and symmetric
difference of graphs are associative and all of them are commutative except for
composition.

(e) If G is connected and |V (G)| > 1 then for every vertices (u1, v1), (u2, v2) ∈
V (G[H ]) we have:

dG[H]((u1, v1), (u2, v2)) =

⎧⎪⎪⎨
⎪⎪⎩

dG(u1, u2) u1 �= u2

0 u1 = u2 & v1 = v2

1 u1 = u2 & v1v2 ∈ E(H)
2 u1 = u2 & v1v2 �∈ E(H)

.

(f) dG+H(u, v) =

⎧⎨
⎩

0 u = v

1 uv ∈ E(G) ∪ E(H) or (u ∈ V (G) & v ∈ V (H))
2 otherwise

.

(g) If G and H are connected graphs then

dG⊕H((a, b), (c, d)) =

⎧⎨
⎩

0 a = c & b = d

1 ac ∈ E(G) or bd ∈ E(H) but not both

2 otherwise
.

(h) If G and H are connected graphs then

dG∨H((a, b), (c, d)) =

⎧⎨
⎩

0 a = c & b = d

1 ac ∈ E(G) or bd ∈ E(H)
2 otherwise

.

Definition 1-2. Let G be a graph. The hyper-Wiener polynomial of G is
defined as WW (G, x) = 1

2

∑
{a,b}⊆V (G) xd(a,b)+d2(a,b).

It is easy to see that WW ′(G, 1) = WW (G), WW (G, 1) =
(
n
2

)
and WW (G, x) =∑d(G)

j=1 nG(j)xj(j+1) , where nG(j) = {{a, b} | d(a, b) = j}.

Lemma 1-3. (a) WW (Kn, x) =
(
n
2

)
x2.

(b) WW (Pn, x) =
∑n−1

j=1 (n − j)xj(j+1).

(c) WW (Cn, x) =

{ ∑n
2 −1
j=1 nxj(j+1) + n

2 xn(n+2)/4 n is even∑n+1
2

j=1 xj(j+1) n is odd
.

(d) WW (Ln, x) = (3n − 2)x2 +
∑n

k=2(2k − 3)x(n−k−2)(n−k−1).
(e) WW (Qn, x) =

∑n
k=1

(
n
k

)
xk(k+1).

Throughout this paper our notation is standard and taken mainly from the
standard books of graph theory and [4, 21]. Kn, Pn, Cn denote the complete
graph, The path and the cycle on n vertices respectively. For a real number x,
[x] denotes the greatest integer less than or equal to x.
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2. Main Results

In this section, exact expressions for the hyper-Wiener polynomials of compo-
sition, Cartesian product, join, disjunction symmetric difference and power of
graphs are computed.

Theorem 2-1. Suppose G1 and G2 are graphs with |V (G1)| = n1, |V (G2)| =
n2, |E(G1)| = m1 and |E(G2)| = m2. If G1 is connected then WW (G1[G2], x) =
n2

2WW (G1, x) + 1
2n2m2x

2 + 1
2n1(

(
n2
2

) − m2)x6.

Proof. By Theorem 1-1(e),

WW (G1[G2], x) =
1
2

∑
{(u1,v1),(u2,v2)}

xdG1[G2]((u1,v1),(u2,v2))+d2
G1[G2]((u1,v1),(u2,v2))

=
1
2

∑
u1 �=u2

xdG1[G2]((u1,v1),(u2,v2))+d2
G1[G2]((u1,v1),(u2,v2))

+
1
2

∑
v1v2∈E(G2)

u1=u2

x2 +
1
2

∑
v1v2 �∈E(G2)

u1=u2

x6

=
1
2

∑
u1 �=u2

n2
2x

dG1(u1,u2)+d2
G1

(u1,u2) +
1
2
n1m2x

2

+
1
2
n1(

(
n2

2

)
− m2)x6

= n2
2WW (G1, x) +

1
2
n2m2x

2 +
1
2
n1(

(
n2

2

)
− m2)x6. �

Theorem 2-2. Let G and H be graphs with n1 = |V (G)|, n2 = |V (H)|,
m1 = |E(G)| and m2 = |E(H)|. Then

WW (G∨H, x) =
1

2
(n2

1m2 +n2
2m1−2m1m2)x2 +

1

2

[(n1n2

2

)
− n2

1m2 − n2
2m1 + 2m1m2

]
x6.

Proof. The proof is straightforward and follows from Lemma 1-1(h). �

Theorem 2-3. Let G and H be graphs with n1 = |V (G)|, n2 = |V (H)|,
m1 = |E(G)| and m2 = |E(H)|. Then

WW (G⊕H, x) =
1

2
(n2

1m2+n2
2m1−4m1m2)x2+

1

2

[(n1n2

2

)
− n2

1m2 − n2
2m1 + 4m1m2

]
x6.

Proof. The proof is straightforward and follows from Lemma 1-1(g). �

Theorem 2-4. Let G1, G2, · · · , Gk be graphs with ni = |V (Gi)| and mi =
|E(Gi)|, 1 ≤ i ≤ k. Then

WW (G1 +G2 + · · ·+Gn) =
1
2

⎡
⎣ k∑

i=1

mi +
∑
i�=j

ninj

⎤
⎦x2 +

1
2

k∑
i=1

[(
ni

2

)
− mi

]
x6.
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In particular, if G is a graph with n vertices and m edges then WW (kG, x) =
1
2 [km +

(
k
2

)
n2]x2 + 1

2

[(
n
2

) − m
]
x6.

Proof. By Lemma 1-1(f), we have WW (G1 + G2, x) = 1
2

∑
u∈V (G1),v∈V (G2)

x2

+ 1
2

∑
uv∈E(G1) x2 + 1

2

∑
uv∈E(G2)

x2 + 1
2

∑
uv �∈E(G1) x6 + 1

2

∑
uv �∈E(G2)

x6 =
1
2 [n1n2 +m1+m2]x2 + 1

2 [
(
n1
2

)
+

(
n2
2

)−m1−m2]x6. We now apply an inductive
argument to complete the proof. �

Corollary 2-5. The following equations hold:
a)WW (Wn+1, x) = nx2 + 1

2 [
(
n
2

) − n]x6,
b) WW (Sn+1, x) = 1

2nx2 + 1
2

(
n
2

)
x6,

c) WW (Kn1,n2,··· ,nk
, x) = 1

2

(
k
2

)
x2 + 1

2 [
∑k

i=1

(
ni

2

)
]x6,

d) WW (Cn + Cn), x) = 1
2 (2n + n2)x2 + [

(
n
2

) − n]x6

Theorem 2-6. Suppose G and H are graphs and d = d(G) + d(H). Then

WW (G × H, x) =
1

2

d∑
k=1

⎡
⎣k−1∑

j=1

2nG(j)nH(k − j) + |(V (G)|nH(k) + |V (H)|nG(k)

⎤
⎦ xk(k+1),

where nG(k) denotes the number of pairs in G with distance k. The quantity
nH(k) is defined analogously.

Proof. By Lemma 1-1(a), we have dG×H((a, x), (b, y)) = dG(a, b) + dH(x, y).
Thus,

nG×H(k) = |{{(a, x), (b, y)}|dG×H((a, x), (b, y)) = k}|
= |{{(a, x), (b, y)}|dG(a, b) + dH(a, x) = k}|
= |{{(a, x), (b, y)}|dG(a, b) = j, dH(x, y)) = k − j, j = 0, 1, · · ·k}|

=
k∑

j=0

2nG(j)nH(k − j)

= |V (G)|nH(k) + |V (H)|nG(k) +
k−1∑
j=1

2nG(j)nH(k − j),

which completes the proof. �

Theorem 2-7. Let G be a graph then the hyper Wiener polynomial of G(k)

is given by

WW (G(k)) =
[n/k]−1∑

i=0

k∑
j=1

nG(j + ik)x(i+1)(i+2)

+ (nG(1 + [n/k]k) + · · · + nG(n))x([n/k]+1)([n/k]+2),

where n ≥ k, and nG(n + 1) = nG(n + 2) = · · · = 0. If k|n then the hyper
Wiener polynomial of Gk becomes

∑[n/k]
i=1

∑
(i−1)k+1≤j≤ik nG(j)xi(i+1).
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Proof. By definition of the power graph G(k), V (G(k)) = V (G) and for every
vertex a, b ∈ V (G) a and b are adjacent if and only if dG(a, b) ≤ k. There
are nG(1) pair of vertices at distance 1 (edges), nG(2) vertices at distance
2, · · · and, nG(k) vertices that are at distance k. These vertices become at
distance one in G(k). Hence the coefficient of x is

∑k
j=1 nG(j) in Gk. One can

generalize this idea by taking the distinct pairs of vertices in G whose distances
are in the set Ai = {ik + j, j = 1, 2, ..., k}, where 0 ≤ i ≤ [n/k] − 1. There are
nG(ik + 1)+ · · ·+nG(ik + k) distinct pairs of vertices in G whose distances are
in Ai. These distinct pairs of vertices become at distance i + 1 in G(k). Hence
we have nG(ik + 1)+ · · ·+nG(ik + k) distinct pairs of vertices in G(k) that are
at distance i + 1. This gives the hyper Wiener polynomial of Gk. �

Corollary 2-8. The hyper Wiener polynomials of the graphs P
(k)
n , C

(k)
2n+1,

C
(k)
2n , L

(k)
n and Q

(k)
n are given by the following polynomials:

a ) WW (P (k)
n ; x) =

[(n−1)/k]∑
i=1

k

2
(2n − (2i − 1)k − 1)xi(i+1)

+
1
2
(n − 1 − [

n − 1
k

]k)(n − [
n − 1

k
k])x([ n−1

k ]k+1)([ n−1
k ]k+2),

b ) WW (C(k)
2n+1; x) =

[n/k]∑
i=1

(2n + 1)kxi(i+1)

+ (n − [
n

k
]k)(2n + 1)x([n/k]+1)([n/k]+2),

c ) WW (C(k)
2n ; x) =

[ n−1
k ]∑

i=1

(2n)kqi(i+1)

+ (n − [
n − 1

k
]k)(2n)x([ n−1

k ]+1)([ n−1
k ]+2),

d ) WW (L(k)
n ; x) =

1
2
[2k(2n− k) − nx2

+
[ n

k ]∑
i=2

2k(2n + (1 − 2i)k)xi(i+1) + 2(n − [
n

k
]k)2x([n/k]+1)([ n

k ]+2)],

e ) WW (Q(k)
n ; x) =

[ n
k ]−1∑
i=0

k∑
j=1

(
n

j + ik

)
2n−1xi(i+1)

+
((

n

1 + k[n
k ]

)
+

(
n

2 + k[n
k ]

)
+ · · · +

(
n

n

)
)x([ n

k ]+1)([ n
k ]+2

)
.

Proof. a) By Theorem 2-2, the coefficient of xi(i+1) in P
(k)
n is as follows:

n− (i − 1)k − 1) + (n − (i − 1)k − 2) + · · ·+ (n− ik) =
k

2
(2n− (2i − 1)k − 1).
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Also, the coefficient of x([ n−1
k ]+1)([ n−1

k ]+2) is

(n− [
n − 1

k
]k)(n− [

n − 1
k

]k−1))+ · · ·+1 =
1
2
(n− [

n − 1
k

]k)(n− [
n − 1

k
]k +1).

Proof of other parts are the same. �

Corollary 2-9. The hyper Wiener indices of the graphs P
(k)
n , C

(k)
2n+1, and C

(k)
2n

are given by the following formulae:

a ) WW (P (k)
n ) =

k(k − 1)
2

[
n − 1

k
]4 + (

3
2
k2 +

2
3
n − kn − 5

6
k − 1

3
)[

n − 1
k

]3

+ (k2 +
1
2
n2 + k − 1 +

3
2
n − 3kn)[

n − 1
k

]2

+ (k +
3
2
n2 − 1

6
n − 2kn − 2

3
)[

n − 1
k

] − n

b ) WW (C(k)
2n+1) =

−2
3

kn([
n

k
] + 1) − 1

3
k([

n

k
] + 1) +

2
3
)kn([

n

k
] + 1)3

+ (1/3)k([
n

k
+ 1)3 + (n − [

n

k
]k)(2n + 1)([

n

k
]2 + 3

n

k
+ 2)

c ) WW (C(k)
2n ) =

−2
3

kn([
n − 1

k
] + 1)

+
2
3
kn([

n − 1
k

] + 1)3 + 2(n − 1 − [
n − 1

k
]k)n + n([

n − 1
k

] + 1)([
n − 1

k
] + 2)
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