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ABSTRACT. In this paper, using a relation between Schur multipliers of
pairs and triples of groups, the fundamental group and homology groups
of a homotopy pushout of Eilenberg-MacLane spaces, we present among
other things some behaviors of Schur multipliers of pairs and triples with
respect to free, amalgamated free, direct products and direct limits of

groups with topological approach.
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1. INTRODUCTION AND PRELIMINARIES
The Schur multiplier of a group G is defined to be
M(G) = (RN F)/[R, P,
where F'/R is any free presentation of G. It is a well-known fact that M(QG)
depends, up to isomorphism, only on G. Furthermore, it is easy to see that
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M (—) is a functor from the category of groups to the category of abelian groups
(see [5] for further details).

The Schur multiplier of a pair of groups is also defined in several ways [4]. As
mentioned in [4], the Schur multiplier of a pair of groups is useful to obtain
information on Schur multiplier of a group. Also this concept has been general-
ized to the schur multiplier of a triple of groups and it is proved that any result
on Schur multiplier of a triple of groups yields to a result on Schur multiplier
of a pair of groups. So we are interested to study on these notions in this
paper. By a pair of groups (G, N) we mean a group G with a normal subgroup
N. A homomorphism of pairs (G1, N1) — (G2, N2) is a group homomorphism
G1 — G that sends N into Ny. The Schur multiplier of a pair of groups
(G, N) which was first defined by G. Ellis [4] will be a functorial abelian group
M (G, N) whose principal feature is a natural exact sequence

- — H3(G) — H3(G/N) — M(G,N) — M(G) —
M(G/N) — N/[N,G] — G — (G/N)®* =0  (1.1)

in which H3(G) is the third homology group of G with integer coefficients.
There are several possible definitions of the Schur multiplier of a group and the
Schur multiplier of a pair of groups. We are going to deal with topological one
that we present in this note.

First, we note that for any group G one can construct functorially a connected
CW-complex K(G), called the Eilenberg-MacLane space, whose fundamental
group is isomorphic to G which has all higher homotopy groups trivial [8]. By
considering H,,(X) as the nth singular homology group of a topological space
X, with coefficients in the group Z, we recall the relation H,(G) = H, (K (G)),
for all n > 0, [1, Prop. 4.1].

By the Hopf formula for any CW-complex K with m (K) = G and F/R as a
free presentation for G we have the following isomorphism

Hy(K)/ha(ms(K)) = RO F'/[R, F],

where hg is the corresponding Hurewicz map [3]. Hence a topological definition
of the Schur multiplier of a group G can be considered as the second homology
group of the Eilenberg-MacLane space K(G), H2(K(G)). This topological
interpretation of M(G) can be extended to one for M (G, N) as follows.

For any two group extensions1 - M - P—-Q —1land1 —-N —- P — R —
1 we consider the following homotopy pushout

K(P) — K(P/M)

! !
K(P/N) — X.

By the Mayer-Vietoris pushout sequence, we have the following exact sequence

- — H3(P) — H3(Q) ® H3(R) — H3(X) — Hy(P) —
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Using [2, Corollary 3.4] we have
m(X) 2 P/MN and m(X)=MNN/[M,N].

If we make the assumption P = MN, then X is 1—connected and so by
Hurewicz Theorem we have

H(X)=0 and H(X)Zm(X)=2MnNN/[M,N].
Hence the exact sequence (1.2) becomes as follows
-+ — H3(P) — Hs(Q) & H3(R) — H3(X) — Ha(P) —
Hy(Q) @ Hy(R) —» M N N/[M,N] — P — Q" & R — 0. (1.3)
If we consider the two group extensions 1 - N — G — G/N — 1 and

1 —- G — G — 1 — 1 corresponding to a pair of groups (G,N) and the
following homotopy pushout

K(G) — K(G/N)

l l
1 — X, (1.4)

then we have the following natural exact sequence as (1.1)
H3(G) — H3(G/N) — H3(X) — Hy(G) = M(G) —

Hy(G/N) = M(G/N) — Ho(X) = N/[N,G] — G** — (G/N)** — 0.
Hence the Schur multiplier of a pair of groups (G, N) can be considered as the
third homology group of a space X which is the homotopy pushout correspond-
ing to the pair of groups (G, N) as (1.4).

Remark 1.1. As we mentioned before, the notion of the Schur multiplier of a
pair of groups was introduced by G. Ellis in [4].

For a pair of groups (G, N), the natural epimorphism G — G/N induces func-
torially the continuous map f : K(G) — K(G/N). Suppose that M(f) is the
mapping cylinder of f containing K (G) as a subspace and is also homotopically
equivalent to the space K(G/N). Take K(G,N) to be the mapping cone of
the cofibration K(G) — M(f). By Mayer-Vietoris, the cofibration sequence
K(G) — M(f) — K(G, N) induces a natural long exact homology sequence

= Hn1(G/N) = Hp 1 (K(G, N)) — Hn(G) = Hp(G/N) — -

forn > 0. G. Ellis [4] showed that the Schur multiplier of the pair (G, N') can be
considered as the third homology group of the cofiber space K (G, N). We note
that the mapping cone K (G, N) of the cofiber K(G) — M(f) is homotopically
equivalent to the space X which is the homotopy pushout corresponding to the
pair of groups (G, N). Therefore our topological interpretation of the Schur
multiplier of a pair of groups (G, N) is equivalent to the topological definition
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of G. Ellis.

In Section 2, using the topological interpretations, we present among other
things some behaviors of the Schur multiplier of pairs of the free product, the
amalgamated free product, and the direct product. Also, we show that the
Schur multiplier of a pair commutes with direct limits in some cases.
By a triple of groups (G, M, N) we mean a group G with two normal subgroups
M and N. A homomorphism of triples (G1, My, N1) — (G2, M3, N3) is a group
homomorphism G7 — G4 that sends M; into My and Ny into Na. G. Ellis [4]
defined the Schur multiplier of a triple (G, M, N) as a functorial abelian group
M (G, M, N) whose principle feature is a natural exact sequence
- — H3(G,N) — H3(G/M,MN/M) —- M(G,M,N) — M(G,N)
M(G/M,MN/M)— M N N/[MnNN,G][M,N]
— N/[N,G] - NM/M[N,G] — 0. (1.5)
He also gave a topological interpretation for M (G, M, N). In Section 3, first
we give a topological definition of the Schur multiplier of a triple which is
equivalent to the one of Ellis. Then using this definition we show that the Schur
multiplier of a triple commutes with direct limits under some extra conditions.
Nevertheless, this definition does not seem suitable to peruse the behavior of
the Schur multiplier of a triple with several products of groups. So in continue,
we define a new version of the Schur multiplier of a triple (G, M, N) which has
some better consequences than the one of Ellis. We show that our new notion
is coincide with the one of Ellis if G = M N. Finally, we study the behaviors of
this new version of the Schur multiplier of a triple with respect to free products,
amalgamated free and direct products and also a better behavior with respect
to direct limits than the one of Ellis.

2. SCHUR MULTIPLIERS OF PAIRS

The following two known results obtained from the existence of the natural
long exact sequence (1.1). Using the properties of Eilenberg-MacLane spaces,
they can be reproved by topological viewpoints.

Theorem 2.1. The Schur multiplier of a group G is a special case of the Schur
multiplier of a pair of groups that is M (G,G) =2 M(G).

Proposition 2.2. For any group G, the Schur multiplier of the pair (G, 1) is
trivial.

Proof. First, we recall that M (G, 1) is equal to the third homology group
Hs(X), where X is the mapping cone of the cofibration i : K(G) — K(G).
Hence X is the quotient space of (K(G) x I) U K(G) with respect to the
equivalent relation (z,0) ~ (2/,0) , (z,1) ~ i(z), for all z,2’ € K(G). Thus
the space X is a contractible and so with trivial homology groups the proof is
completed. [
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We recall that by Miller Formula [5] for any two groups G; and G2 we have
M(G1%G2) =2 M(G1) ® M(G1). The authors have also presented a topological
proof for this note in [6]. In the following, we prove a new result for the
structure of the Schur multiplier of pairs of the free product with topological
method.

Theorem 2.3. For any two groups Gy, G2 and their normal subgroups N; IG;
(i =1,2) we have the following isomorphism

M(G1 * GQ, <N1 * N2>G1*G2) = M(Gl, Nl) D M(GQ, NQ),

where (N7 * N2)&1*G2 is the normal closure of Ny x Ny in Gy * Gb.
Proof. Suppose that X; (i = 1,2) is the pushout of corresponding diagram
K(Gi) — K(Gi/Ny)

| !

1 — X,L'.
Using the fact that any two direct limits commute, we conclude that the space
X3 V X5 is also a pushout for the following diagram

K(Gl) V K(Gg) — K(Gl/Nl) \Y K(GQ/NQ)

! !

1— X1 \ XQ.
According to Van-Kampen Theorem, we rewrite the above diagram as follows

K(G1 * Gg) — K(Gl/Nl * GQ/NQ) = K(Gl * G2/<N1 * N2>G1*G2)

1 1

1 — X1 vV XQ.
Now by the definition and the Mayer-Vietoris sequence for the above diagram
we have

M(G1 * G, (N1 * No)1*%2) = Hy (X, V X5)
>~ H3(X1) @ H3(X2) = M(G1,N1) ® M(G2,N2). O
We recall that the authors in [6] proved that if G is the free amalgamated
product of its two subgroups G; and G2 over a subgroup H, then the following
exact sequence holds
— Hap — Grab © Goap — Gap — -+

Now we give the following result for the Schur multiplier of a pair of amalga-
mated free product of groups by topological argument.

Theorem 2.4. Let (G1, N1), (G2, N2) be two pairs of groups and H < N;NNs.
Then the Schur multiplier of the pair of amalgamated free products (G *p
Ga, Ny xg Na), satisfies the following exact sequence

-+ — H3(K(G1 % G)) — H3(G1/N1) ® H3(G2/N2) —
M(Gy *g G2, N1 %g Nao) — M(G1 %5 G2) = M(G1/N1) @ M(G2/N3) — - - .
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Proof. In order to introduce the Eilenberg-MacLane space corresponding to
the group G1 *g Ga, first consider the space K(H) and then by attaching cells
to this space in suitable ways, construct spaces K(G1) and K(G2) (for further
details see [6, Theorem2.5]). In this case, using Van-Kampen Theorem, we
have the isomorphism 71 (K (G1) U K(G2)) = G1 g G2, and by the way of
constructing the spaces K (G1) and K(G2) we can consider K (G1) U K(Gz) as
an Eilenberg-MacLane space for the group G xg G.

Also we recall that for any i € {1,2}, M(G;, N;) is the third homology group
Hs(X;), where X; is pushout of the following diagram

1 1

1— Xi.
Using the fact that union preserves direct limit of spaces, the following diagram
is also a pushout diagram

K(Gl) @] K(Gg) —_ K(Gl/Nl) @] K(GQ/NQ)

! !

1— X1 U XQ.
Note that by the assumption H C Ny N Ny, K(G1/N1) and K(G2/N2) has
one-point intersection. Roughly speaking, K (G1/N1) U K(G2/N2) is indeed a
wedge space and so it is an Eilenberg-MacLane space corresponding to the free
product G1/Ny x G3/N3. On the other hand, by the following isomorphism

G1 g Ga/ Ny g Ny 2 G1/Ny * G2/ Na,

the two Eilenberg-MacLane spaces K(G1 xg Ga/Ny %y No) and K(G1/Ny *
G2/N3) = K(G1/N1) U K(G2/N3) are homotopic. Hence we can rewrite the
above diagram as follows
K(Gy *g G2) — K(G1%g G2/ N1 *g N2)

! !

1— X1 U XQ.
Now using the Mayer-Vietoris sequence for this recent pushout diagram, we
obtain the following exact sequence

= Hg(K(Gl * g Gg)) — Hg(K(Gl * g GQ/Nl * NQ)) — Hg(Xl U XQ) —

HQ(K(Gl *g Gg)) o HQ(K(Gl X GQ/Nl *g NQ)) —> .
Also using Mayer-Vietoris sequence for join spaces, we have the isomorphism
Hn(K(Gl/Nl) U K(GQ/NQ)) = Hn(K(Gl/Nl)) (&) Hn(K(GQ/NQ)), for any n
N. Finally, by the topological definitions of the Schur multiplier of a group and
a pair of groups, M (G1 g G2, N1 g No) = H3(Xq U X2) and M (G1 *g G2) =
Hy(K(G1 #m G2)). Hence we get the following exact sequence

PN Hg(K(Gl * g Gg)) — Hg(Gl/Nl) D H3(G2/N2) —
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M(Gy%pGo, Ny#gr No) — M(GrxpGo) — M(G1/N1)®M(Go/No) — ---. O

Note that the authors in [6], using topological methods, proved that for any
two groups G1 and G, the following isomorphism holds

M(Gy x G2) =2 M(G1) ® M(G2) ® (G1)ab @ (G2)ap-
In the following we extend this result.
Theorem 2.5. For any two pairs of groups (G1,N1), (G2, Na), the Schur
multiplier of a pair of the direct products (G1 x Ga, N1 X Na) satisfies the
following exact sequence
- — H3(G1) ® (M(G1) ® G3") & (GY* @ M(G2))®
H3(Gy) @ Tor(G*, G3%) — H3(G1/Ny) @ (M(G1/Ny) ® GS°No/No)@®
(G(llel/Nl X M(GQ/NQ)) D H3(G2/N2) D TOI‘(G(llel/Nl, ngNQ/NQ) i
M(G1 X GQ,Nl X Ng) — M(G1 X Gz) — M(G1/N1 X GQ/NQ) —> e
Proof. First, we consider the following pushout diagram
K(Gl X Gg) — K(Gl X GQ/Nl X NQ)

! !
1 — X.

By the definition, we know that M(G; x G2, N1 x N3) = Hs(X). On the
other hand, by Mayer-Vietoris sequence for the above diagram we conclude the
following exact sequence

e Hg(K(Gl X Gg)) — Hg(K(Gl X GQ/Nl X Ng)) — Hg(X) —
HQ(K(Gl X Gg)) — HQ(K(Gl X GQ/Nl X NQ)) — e
Using K(G1 x G2) = K(G1) x K(G2), the Kinneth Formula and some prop-
erties of the functor Tor and tensor product we have
Hg(K(Gl X Gg)) = Hg(K(Gl) X K(GQ)) =
H3(K(G1)) ® (H2(K(G1)) ® Hi(K(G2))) @ (H1(K(G1)) ® Ha(K(G2)))®
H3(K(G2)) @ Tor(H1(K(G1)), H1(K(G2)))-
By the similar argument for H3(K(G1 X G3/Ni x Na)) = H3(K(Gy1/Ny X
G2/N3)) and the isomorphisms Hy(K(G)) = G, Hy(K(G)) = M(G) we
obtain the following exact sequence
= H3(K(G1)) & (M(G1) ® G5) @ (G © M(G2))®
Hy(K(Ga)) @ Tor(G{", G8") — H3(K(G1/N1)) @ (M(G1/N1) @ G§"Na/No)®
(GY*N1 /N1 ©@ M(G2/Ns)) © Hz(K(G2/Na)) © Tor(G{* N1 /N1, G3"No/N2) —
M(G1 X GQ,Nl X Ng) — M(G1 X GQ) — M(Gl/Nl X GQ/NQ) — ...

Remarks 2.6. Using the isomorphism Hs(Z,,) = Z,, [1], in some special cases
we can rewrite the above exact sequence as follows:



58 H. Mirebrahimi and B. Mashayekhy

(1) If G;/N; is a finite cyclic group of order m; (i = 1,2), then we have the
following exact sequence

-~—>Zm1@Zm2@Zd—>M(G1><G2,N1><N2)—>
M(Gl)@M(Gg)EB(G1®G2)—>Zd—>"-,

where d = ged(mq, me). Moreover, if G; and G2 are also cyclic, then we get
the following exact sequence

o= Loy © Ly, ® Zg — M(G1 x Go, N1 x Np) —
Gi1®Gy —Zg— ---
(i) If ged(|G1/N1|, |Ga/Na|) = 1, then the following exact sequence holds
- — H3(G1/Ny) @ H3(Ga/Na) — M(Gy x Ga, Ny x Ny) —
M(G1) ® M(G2) @ (G1 ® G) — M(G1/N1) ® M(G2/Na) — - -+ .

Moreover, if gcd(|G1],|G2|) = 1, then we conclude the following exact sequence
-+ — H3(G1/N1) @ H3(G2/N2) — M(Gy1 x Ga, N1 X Na) —

(#4¢) Finally, if G; is a finite cyclic group (i = 1, 2) such that ged(|G1],|G2]) = 1,
then we have the following exact sequence

-'—>ZmlEBZm2—>M(G1XG2,N1XN2)—>O.

The following theorem has been proved by Ellis [4]. Here we present a topo-
logical proof for this theorem.

Theorem 2.7. If G = N >i(Q is the semidirect product of a normal subgroup
N by a subgroup Q, then

M(G)=ZM(G,N)® M(Q).
Proof. Using the corresponding pushout diagram
K(G) — K(G/N) = K(Q)

1 1
1— X,

and the Mayer-Vietoris sequence for this diagram, we conclude the following
exact sequence

- — H3(K(G)) — Hs(K(Q)) — H3(X) —

Hy(K(G)) —» Hy(K(Q)) — Ho(X) — -+ . (2.1)

Since G = N >1(@Q), there exists a homomorphism 5 : ) — G such that ao g =
lg. Hp(K(—)) is the composition of two functors and so the induced homo-
morphism «, : H,(K(G)) — H,(K(Q)) is surjection; and hence the exactness
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of (2.1) implies the injectivity of the homomorphism H,(X) — H,_1(K(G)).
Thus we have the following exact split sequence

0 — H3(X) — Hy(K(G)) — Ha(K(Q)) — 0

which completes the proof. [J
Theorem 2.8. Suppose that M and N are two subgroups of a group G so that
M = M N, then the following isomorphism exists:

M(MN,N)> M(M,MNN).
Proof. By the Second Isomorphism Theorem we have MN/N = M/M N N.
Because of the functorial property of K(—), we conclude the homotopy equiva-
lences K (M)~ K(MN) and K(MN/N) ~ K(M/M N N). Therefore, by the
uniqueness of the pushout in the category hTop, we can identify two following
homotopoy pushout diagrams in this category

K(MN)— K(MN/N) K(M)— K(M/MNN)
l l ! l
1— X, 1—Y.
Hence by the definition,
M(MN,N)=Hs(X)>2Hs(Y)=M(M,MnNN). O

Note that applying the five lemma and the properties of the direct limit of
a directed system to an exact sequence, namely the fact that this functor is
exact and it commutes with homology, one can show that for a directed system
{(Gi, N;) }ier of any pair of groups, the following isomorphism holds

However in the following we establish a topological proof for this fact in special
case, where {(Gi, N;)}ier is a directed system of pairs of abelian groups. First
we need the following lemma.

Lemma 2.9. The direct limit of a direct system {X; }ier of Eilenberg-MacLane
spaces is an Eilenberg-MacLane space. Moreover, if the system {X;}icr is
directed and 71 (X;) is abelian group, for any i € I, then the Eilenberg-MacLane
space liin X, is corresponding to the group liin m1(X5).

Proof. Consider the induced direct system {m,(X;)}icr. In order to prove
that liin X, is an Eilenberg-MacLane space, first we show that 7 (hin X;) is

abelian. For any a and § in 71 (lim X;), there exists two paths 7 and A in
lim X; such that « = [y] and 8 = [\]. Note that lim X; is a quotient space

of the wedge space V;c1X;, and so we can consider v N X; and AN X; as two
paths in X;, for any ¢ € I. Since m(X;)’s are abelian groups, v N X; and
AN X; commute with each other in the space X; (i € I) up to homotopy.
Therefore two paths v and A commute with each other in the space liin X; up
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to homotopy. Thus 7 (lim X;) is an abelian group. By a similar argument we
can show that 7, (lim X; is a trivial group, for any n > 2. If a is an element
of 7, (lim X;), thereéexists an n-loop 7 in lim X; such that a = [y]. Similar to
the prezious note, v N X, is an n-loop in ;(i (¢ € I); and since m,(X;)’s are
trivial groups, so [y N X;] is trivial in 7, (X;), for any ¢ € I. Because of the
structure of the space lim X, [v] is also trivial in 7, (hin X;). This note is true

for any arbitrary n > 2 and so m,(lim X;) (n > 2) is trivial. So if the space
X;, for any i € I, is Eilenberg-MacLane, then the space lim X; should be also

Eilenberg-MacLane.

Moreover, if m1(X;)’s are abelian groups, we have 71 (X;) & H;(X;), for any
i € I. Hence using the fact that homology functors commute with direct limits
of directed systems, we conclude that

limm (Xl) = hmHl(Xz) = Hl(thz)

Also, 71 (limX;), as a homomorphic image of the abelian group limm (X;), is

abelian, and so we have
H,(lim X;) 2 7; (lim X;)

which completes the proof. [J
Theorem 2.10. Let {(G;, N;)}ier be a given directed system of pairs of abelian
groups, then M (lim G;,lim N;) 2 lim M (G, N;).
Proof. First, for?my 1 g I, we cor;ider the corresponding pushout diagram
K(Gi) — K(Gi/Ny)
1 1
1— Xi.

Using the fact that any two direct limits commute, we conclude that the fol-
lowing diagram is also a pushout diagram,

lim K(G;) — lim K'(Gi/N;)
1 1
1 — liin X;.
Now by Lemma 2.9, we rewrite the above diagram as follow
K(lim G;) — K(lim G;/N;)
1 1

Finally, by the definition and the fact that homology groups commute with the
direct limit of a directed system, we have
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3. SCHUR MULTIPLIERS OF TRIPLES

Let (G, M, N) be a triple of groups. Consider the following homotopy pushout

K(G,N) — K(G/M,MN /M)

! !
1 — X.

Using the Mayer-Vietoris sequence for homotopy pushout, we have the following
exact sequence

Hy(K(G,N)) — Hy(K(G/M, MN/M)) — Hy(X) —
H3(K (G, N)) — H3(K(G/M, MN/M)) —

Hs(X) — Hy(K(G,N)) — -+~ .

As H4(K(G7N)) = H3(G5N)7 M(G7N) = H3(K(G7N))a H3(X) = Mn
N/[M N N,G] and Hy(K(G,N)) = 0 (see [2]), we obtain the following exact
sequence

H3(G,N) — Hs(G/M, MN/M) — Hy(X) — M(G,N)
M(G/M,MN/M) — M0 N/[M N N,G|[M,N]

— N/IN,G] - NM/MI|N,G] — 0.

Now, the Schur multiplier of the triple (G, M, N) is defined to be the fourth
homology group of the space X, M (G, M, N) = Hy(X). If K(G, M, N) denotes
the mapping cone of the canonical map K(G,N) — K(G/M,MN/M), then
it is easy to see that the space X and K(G, M, N) have the same homotopy
type. Therefore the above definition of the Schur multiplier of a triple is coin-
cide with the definition presented in [4] by Ellis. Using the above topological
interpretation of the Schur multiplier of a triple and similar to Theorem 2.7,
we can study the behavior of the Schur multiplier of a triple with respect to
direct limits as follows. However, by this definition, it does not seem possible
to peruse the behavior of the multiplier of a triple with several products of
groups, as done for the multiplier of a pair of groups. So in continue, we intend
to present a more useful definition for this notion.

Theorem 3.1. Let {(G;, M;, N;)}icr be a directed system of triples of abelian
groups such that M; " N; =1 for alli € I. Then

M(hm Gi, lim Mzathz) = hmM(G“ Mi, Nl)
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Proof. First, by the proof of Theorem 2.7, we recall that for any abelian group
G;, the space lim K (G;, H;) can be considered as K (lim G;,lim H;). For the
group lim M (G;, M;, N;), we have the following diagram

| 1
But by the above facts, we can replace this diagram by the new one

| !
Now by the property of direct limit which preserves exact sequences, we reform
the above diagram to the following

| !

The last diagram completes the proof. [

According to our topological definition of the Schur multiplier of a pair of groups
in previous section, it seems that we can generalize this notion to triples more
natural than the one of Ellis. In order to define this new version of the Schur
multiplier of a triple (G, M, N) consider the following homotopy pushout
K(G) — K(G/N)
1 !

Now we define the new version of the Schur multiplier of the triple (G, M, N)
to be the third homology group of the space X, Hs(X).

Using the Mayer-Vietoris sequence for the above diagram we conclude the fol-
lowing exact sequence

-+ — H3(K(G)) — H3(K(G/N)) @ H3(K(G/M)) — H3(X) — H2(K(GQ)) —
Hy(K(G/N)) ® Hy(K(G/M)) — Hy(X) — -
By Hopf Formula [7] for any group G, H2(K(G)) = M(G); so we obtain the
following exact sequence
-+ — H3(K(G)) — Hs(K(G/N)) & Hs(K(G/M)) —
M(G,N,M) — M(G) - M(G/N)e M(G/M) — --- .

Remarks 3.2.
(7) Note that if G = M N, then by [2] H5(X) = ker(N A M — G). Also, Ellis
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[4] mentioned that if G = M N, then M(G,N, M) = ker(N AN M — G). Hence
our definition of the Schur multiplier of a triple of groups coincide with the
definition of Ellis, if G = M N.

(i) Since our definition of the Schur multiplier of a triple of groups is a natural
generalization of the pair’s one, we can present more behaviors of this new
notion with respect to free, amalgamated free, and direct products and also a
better behavior with respect to direct limits than the one of Ellis.

The following results are evidence for the above claim.

Theorem 3.3. For any two triple of groups (G1, N1, M) and (G2, Na, Ma),
we have the following isomorphism

M(Gl*GQ, <Z\71>I<Z\72>G1*G27 <M1*M2>Gl*02) = M(Gl, Nl, Ml)EBM(GQ, N27 Mg)
Proof. Suppose that X; (¢ = 1,2) is the pushout of corresponding diagram
1 1
Similar to the proof of the Theorem 2.3, using the fact that any two direct
limits commute, we conclude that the space X7 vV X5 is also a pushout for the
following diagram
! !
K(Gl/Ml) \/K(GQ/MQ) — X1 \/XQ.
According to Van-Kampen Theorem, we rewrite the above diagram as follows
K(Gl * GQ) — K(Gl/Nl * GQ/NQ) = K(Gl * G2/<N1 * N2>G1*G2)
! |
K(Gl * G2/<M1 * M2>G1*G2) = K(G1/M1 * GQ/MQ) — X1V Xo.

Now by the definition and the Mayer-Vietoris sequence for the above diagram
we conclude the following isomorphism

M(G1 * (g, <N1 * NQ>G1*G2, <M1 * M2>G1*G2) = Hg(Xl \/XQ) =
Hg(Xl) D Hg(XQ) = M(Gl, Ny, Ml) D M(GQ, N, Mg) O

Also, by naturalness of our new version of the Schur multiplier of triple, we can
give more results about the Schur multiplier of triples of groups deduced with
the proofs similar to those of pairs as follows.

Theorem 3.4. Let (G1, N1, M1), (Ga, Na, M) be two triples of groups and
H < NyN Ny, H< M;N M. Then the Schur multiplier of the triple of amal-
gamated free products (G *g Ga, N1 g No, My xg Ms) satisfies the following
exact sequence

-+ — H3(K(G1*gGa)) — H3(G1/N1)®Hs(G2/N2)@Hs(G1/M1)®Hs(Ga/ Ms) —

M(Gy *g Go, N1 *g No, My« M) — M(Gy *g G2) —
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M(G1/Ny) & M(G2/N2) & M(G1/My) & M(Gz/M2) — -+ .
Theorem 3.5. For any two triples of groups (G1, N1, M1) and (G2, Na, Ma),
the Schur multiplier of the triple of direct products (G1 x Ga, N1 X Na, M1 x Ms)
satisfies the following exact sequence
H3(K(G1))@® (M(G1)®G8") @ (G ® M(G2)) ® H3 (K (G2)) ® Tor(GY, G§?) —

H3(K(G1/N1)) ® (M(G1/N1) @ G5°No/Na) @ (GI°N1 /Ny @ M(Ga/No))®
H3(K(G2/N2)) @ Tor(G5° N1 /N1, G4* N2/ N2) & H3(K(G1/M1))®
(M(G1/M:) @ G3° Mo/ Ms) @ (G M /My @ M(Ga/M2))®
H3 (K (Gy/Ms)) @ Tor(G° M, /My, G My ) My) —

M(G1 x G2, Ny x No, My x M) — M(Gy x G3)

— M(G1/N1 X Go/N2) @ M(G1/M;1 x Go/Mz) — - - .

Remarks 3.6. Some special cases of the above exact sequence are as follows:
(1) If G;/N; and G;/M; are finite cyclic groups of orders m; and I; (i = 1,2),

respectively, then we have the following exact sequence
ol oy, DLy Ly, DLy, DL —
M(G1 x Gay, Ny X No, My x Ms) —
M(G1) @ M(G2) B (Gi®Ge) = Zqg®Ze— - -+,
where d = ged(my, mz2) and ¢ = ged(ly,l2). Moreover, if G; and Gy are also
cyclic, then we get the following exact sequence
=Ly © Ly, Ly S Ly, &Ly, ®Le —
M(G1 x Gay, Ny X No, My x Ms) —
GiRGy > 2ZygDZL. — ---
(#3) If ged(|G1/N1l,|G2/N2|) = 1 and ged(|G1/Mi],|G2/Ms|) = 1, then the
following exact sequence holds

-+ — H3(G1/N1) @ H3(G2/N2) @ H3(G1/Mi) & H3(G2/M2) —

M(G1 x Gay, Ny X No, My x Ma) — M(G1) ® M(G2) ® (G1 ® G3) —
M(G1/N1) ® M(G2/Na) ® M(G1/My) ® M(Go/Mz) — - .
Moreover, if G; is a finite group (i = 1,2) such that ged(|G1],|G2|) = 1, then

we conclude the following exact sequence

-+ — H3(G1/N1) ® H3(G2/N2) ® H3(G1/My) © Hs(G2/M3) —

M(Gy x Gay N1 x Noy, My x My) — M(G1) ® M(G3) —

M(/G1Ny) & M(Ga/Na) & M(G1/My) & M(Ga/Ms) — -+ .

(797) Finally, if G; is a finite cyclic group (i = 1, 2) such that ged(|G1], |G2|) = 1,
then we have the following exact sequence

"—>Zm1@zm2@le@Zl2—)



On Schur Multipliers of Pairs and Triples of Groups with Topological Approach 65

M(G1 X GQ,Nl X NQ,Ml X Mg) — 0.

Finally, we can use Lemma 2.9 and deduce a similar result for triples, as fol-

lows.

Theorem 3.7. The Schur multiplier of a triple of groups commutes with the

direct limit of a directed system of triples of abelian groups.
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