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ABSTRACT. In this article, we show that under certain assumptions every
multiplicative Lie triple higher derivation £ = {L;};en on i is of standard
form, i.e., each component L; has the form L; = §; + v;, where {d; };en is
an additive higher derivation on 4 and {~;};en is a sequence of mappings

~; : 4 — 3(4) vanishing at Lie triple products on 4l.
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1. INTRODUCTION

Let R be a commutative ring with identity and { be a unital algebra over fR.
For any z,y € 4, [x,y] will denote the commutator zy — yz. A map L : ${ — &
is called a multiplicative derivation on &l if L(zy) = L(z)y + zL(y) holds for
all z,y € Y. A map L : & — 4 is called a multiplicative Lie derivation (resp.
multiplicative Lie triple derivation) on U if L([z,y]) = [L(z),y] + [z, L(y)] (resp.
L([[e,yl, 2]) = (L), g, 2] + o, ()], 2] + [[2, 5], L(=)]) holds for all @y, = € st
The concept of derivations was extended to higher derivations. Let us recall the
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basic facts about higher derivations. Let N be the set of all non negative integers
and £ = {L;};en be a family of maps L; : 31 — 4l such that Ly = Iy. Then £ is
said to be a

(7) multiplicative higher derivation on L if L;(zy) = >, L.(x)Ls(y) for all

r+s=1i

xz,y € 4 and for each 7 € N,
(1) multiplicative Lie higher derivation on 4l if

Li([z,y) = Y [Lr(2),Lo(y)]
r4+s=1
for all z,y € 4l and for each i € N,
(#i1) multiplicative Lie triple higher derivation on  if

Lillz,y).2) = ) [Lr(2), Ls(®)], Le(2)]

r+s+t=1i
for all x,y, z € U and for each i € N.

Particularly, if £ = {L;}ien is a family of linear maps, then the above maps are
called higher derivation, Lie higher derivation and Lie triple higher derivation on
31 respectively. Obviously, every higher derivation is a Lie higher derivation and
every Lie higher derivation is a Lie triple higher derivation. But the converse
statements are not true in general (for a counterexample see [12]).

Lie triple (higher) derivation has been studied on several classes of rings and
algebras [1, 4, 5, 6]. In the year 1978, Miers [11] initiated the investigation of
Lie triple derivations on von Neumann algebras and proved that “if M is a von
Neumann algebra with no central abelian summands then there exists an operator
A € M such that L(X) = [A, X] + A(X), where A : M — 3(M) is a linear
map which annihilates brackets of operators in M.” Zhang et.al. [14] and Lu
[9] investigated the Lie triple derivation on nest algebras. Xiao and Wei [12]
obtained that every Lie triple derivation on a triangular algebra can be expressed
as the sum of an additive derivation and a linear functional vanishing on all second
commutators. Also, Ding and Li [3] considered the Lie n-derivation on unital
algebra with a nontrivial idempotents and proved that every Lie n-derivation L on
31 is of the form L = d + ~, where d is a derivation on 4l and + is a linear mapping
from {l into its centre 3(4) that vanishes on [[Lf, U], f]. Apart from these, Ebrahimi
[4, 5] studied Lie higher derivation on B(X) and Lie triple higher derivation on
generalized matrix algebras respectively.

In last few decades, the multiplicative mappings on rings and algebras were
studied by many authors [1, 7, 13]. Martindale [10] established a condition on a
ring such that multiplicative bijective mappings on this ring are all additive. In
particular, every multiplicative bijective mapping from a prime ring containing
a nontrivial idempotent onto an arbitrary ring is additive. Xiao and Wei [13]
considered the case of nonlinear Lie higher derivations on a triangular algebra.
Let £ = {L;}ien be the Lie higher derivation on a triangular algebra. Then
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£ = {L;}ien is of the standard form, i.e., L; = d; +;, where {d; };cn is an additive
higher derivations and {v;};en is sequence of a nonlinear functional vanishing on
all commutators of the triangular algebra. Furthermore, Ashraf and Jabeen in [1]
showed that every nonlinear Lie triple higher derivation on the triangular algebra
has standard form. Han and Wei [7] studied multiplicative Lie higher derivations
of a unital algebra and obtained similar conclusion as shown by Xiao and Wei [13].
In view of cited references, the main purpose of this paper is to prove that every
multiplicative Lie triple higher derivation on a unital algebra has standard form
under certain assumptions.

2. PRELIMINARIES

Throughout, this paper we shall use the following notions: Let 4 = pip+ pilg+
q4p + qtlq be unital algebra with nontrivial idempotents p and ¢ = 1 — p satisfying
(2.2). Let A = pihp, M = pilg,N = ¢ip and B = ¢ip. Then 4 = A + M + N + B.
The center of i is

3 ={a+be A+B|am=mbna=>bnfor all m € M;n € N}.

Define two natural projections 7w : 84 — A and 7 : 4 — B by ma (a+m+n+b) = a
and mp(a +m 4+ n + b) = b. Moreover, ma(3(4)) C 3(A) and mp(3(4)) C 3(B)
and there exists a unique algebra isomorphism 7 : A (3(4)) — 75(3(L)) such that
am = m7(a) and na = 7(a)n for all a € o (3(H)), m € M,n € N.

Let us assume 4 be an algebra with a nontrivial idempotent p and let g =1—1p
be also an idempotent. According to the well known Peirce decomposition, Ll can
be represented in the following form:

U= plip + ptlg + gtlp + gliq (2.1)
where pip and gilg are subalgebras with unital elements p and g, respectively, pilg
is an (pilp, gilg)-bimodule and gilp is a (gilg, pthp)-bimodule. We will assume that
31 satisfies

prp.pitlg = {0} = qlp.pxp implies pxp = 0, (2.2)
pdg.grg = {0} =quxq.qip implies gqrg = 0 '
for all x € 4. Some specific examples of unital algebras with nontrivial idempotents

having the property (2.2) are triangular algebras, matrix algebras and prime (and
hence in particular simple) algebras with nontrivial idempotents.

3. MULTIPLICATIVE LIE TRIPLE HIGHER DERIVATION

Following [8, Theorem 4.2.1], in this section we study the main result of this
paper. In fact we obtain this result:

Theorem 3.1. Let i be a 2-torsion free unital algebra with a nontrivial idempotent
p satisfying (2.2) and £ = {L;}ien be a multiplicative Lie triple higher derivation
on L. Let us assume that
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(1) Ta(3(W) = 3(A) and m(3(U)) = 3(B),

(ii) either A or B does not contain nonzero central ideals,
(130) [z, 84] € B3(LL) implies that x € 3() for all x € LL.

(iv) For each n € N, the condition nM =0 or Mn = 0 implies n = 0;
(v) For each m € M, the condition mN = 0 or Nm = 0 implies m = 0;
(vi) For eachi €N, eL;(e)f =0 and fL;(e)e =0,

Then every multiplicative Lie triple higher derivation £ = {L;}ien is of the stan-
dard form, i.e., each component L; has the form L; = 6; + i, where {0;}ien
is an additive higher derivation on 4 and {v;};en is a sequence of mappings
vi + 4 — 3(M) vanishing at Lie triple products in U, i.e., vi([[z,y],2]) = 0 for
all z,y,z € 4.

In order to prove the theorem we will use the method of induction for the
component index . When ¢ = 1, L is a multiplicative Lie derivation on . By [8,
Theorem 4.2.1] it is easy to observe that there exist an additive derivation J; and a
map 1 : 4 — 3(4) vanishing at Lie triple products such that Ly (z) = é1(x)+71(z)
for all x € 4. Now by [8, Lemma 4.2.1], we know that pLi(¢)g = 0 = ¢L1(q)p-
Following from the proof of [8, Theorem 4.2.1], It can be easily seen that L; and
01 satisty the following properties:

Ll(o) =0, Ll(p)le(Q) € 3(5.1), 51(]7) =0, 51(‘1) =
LiA) CA+3(0), Li(B)CB+3(), &(A)CA 6(B)CB
L.(M) € M, Ly(N) € N, 5,(M) C M, 6(N) C .

Suppose that our result holds for all 1 < r < 4. It follows that there exist an
additive higher derivation {J,},cn of order r and a nonlinear mapping {7, }ren
vanishing on all Lie triple product such that L,.(z) = 6,(z) + 7,-(z) for all z € 4L
It can be easily seen that L, and J, satisfy the following properties:

LT(O) =0, LT(p)v LT(Q) € 3(11), 5T(p) =0, 67“((1) =0
L.(A) CA+3(), L.(B)CB+3K), 4§(A)CA, 6 (B)CB
L (M) C M, L.(N) C N, 5.(M) C M, 4,(N) CN.

To prove our main result we begin with the following lemmas:

Lemma 3.2. For the index i € N, we have
(1) Li(0) =0,
(1) L;i(p), Li(q) € 3(£0),
(#7) L;(M) C M, and L;(N) C N.

Proof. (i) On using induction hypothesis

L;(0) = [[Li(0),0],0] + [[0,L;(0)],0] 4 [[0,0], L;(0)]
+ > ([Le(0), Ls(0)], Le(0)] = 0, (3.1)
r+s+t z
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(#4) For any m € M, using induction hypothesis

Li(m) = Li([[m,q],q])
= [[Li(m),q],q] + [[m,Li(q)], q] + [[m, q], Li(q)]
+ Y [[Le(m), Lo(q)], Le(q)]

r+s+t=1
r,s,t<t

= [[Li(m)7Q]7Q] + [[vai<q)]7Q] + [[ma Q];Li(Q)]
= pLi(m)q + qLi(m)p + 2[m, L(q)]. (3.2)
Now left multiplying by p and right multiplying by ¢ in above the expression yield
2[m,L;(q)] = 0 and hence [m,L;(¢)] = 0. In a similar manner, we arrive at
Li(n) = pLi(n)q + qLi(n)p + 2[n, Li(q)].
Consequently, 2[n, L;(¢)] = 0 and hence [n, L;(g)] = 0. Therefore, from [m,L;(q)] =
0 and [n,L;(q)] = 0, we get L;(q) € 3(). Similarly, L;(p) € 3(L0).
(#491) Now from (3.2) and L;(q) € 3(), we get that L;(¢) = pL;(q)p + ¢Li(q)q. For
any x € Y and my, me € M
0 = Li([[ma, m2], ])
= [[Li(m1), ma], 2] + [[m1, Li(m2)], 2] + [[m1, ma], L(2)]
+ Y [[L(m), Lo(ma)], Le(2)]

r4+s+t=1
r,8,t<1%

= [[Li(ma), mal, ] + [[m1, Li(m2)], 2]
which implies that [L;(m1), ms] + [m1, L;(m2)] € 3(4). Also,

[m1,Li(mz)] = [[p,m1],Li(m2)]
= Li([[p, 1], m2]) — [[Li(p), m1],ma] — [[p, Li(m1)], m2]

— > L) Lo(ma)], Le(mo)]

r4+s+t=1
r,8,t<1t

= —[lp, Li(ma)], ma].
From (3.2), we find that

[Li(m1), mo] + [ma, Li(m2)] = [qLi(m1)p, m2] — [[p, Li(m1)], mo]
= 2[gLi(m1)p, ma].
Since 4l is 2-torsion free, [qL;(m1)p, ma] € 3(4). By definition of 3(4), it follows
that gL;(mq1)pmo € 3(B) for all mg € M. It can be easily seen that gL;(m)pBg
is an ideal of B. Now from assumption (i7), qL;(m1)pBq = {0} which implies that
gLi(m1)p = 0 for my € M. Therefore, L;(m) = pL;(m)q € M. Similarly, we can
obtain L;(N) C N. O

Lemma 3.3. For any x € 4,
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(1) Li(pzq) = pLi(z)q,
(i) Li(gzp) = qLi(z)p.

Proof. On using L;(q),L;(p) € 3(4) and for any z €

[Li(p), z], ¢ + [[p, Li(2)], ] + [[p; 2], Li(q)]
+ > [[L(p), Ls(@)], Le(q)]
eIy
[[p, Li(2)], q]
pLi(z)q + qLi(x)p-
Since L;(pzq) € M, we have ¢L;(z)p = 0. Hence L;(pxzq) = pL;(z)q for all = € L.
Similarly, we can prove that L;(qzp) = qL;(z)p for all z € il ]

Lemma 3.4. L;(—m) = —L;(m), and L;(—n) = —L;(n) for alln € N, m € M.
Proof. Since L;(q), Li(p) € 3(41) and L;(M) C M, we have

Li(=m) = Li([[m,p],q])
= [[Li(m ) pl, g + [[m, Li(p)], 4] + [[m, p], Li(q)]
+ 2 [[L(m),Ls(p)], Le(q)]
ek
for all @ € A and m € M. Similar proof for other case. O

Lemma 3.5. L;(A) C A+ 3(4) and L;(B) C B + 3(4).
Proof. Since for all a € A;b € B and m € M, we have
0 = Li(lla, b}, m])
= [[Li(a),b],m] + [[a, Li(b)], m] + [[a, b], Li(m)]
+ Y (L), Ly(®)], Le(m)]

r+s+t=1
T,8,t<1

= [[Li(a), b], m] + [la, Li(b)], m]

= —m[qL;(a)q,b] + [a, pL;(b)pIm
Slmllarly, n[qu(a’)(L b} = [a’vpL'L(b)p]n which leads to [aapLz(b)p] + [qu(a’)Qa b] €
3(4) for all @ € A and b € B, ie., [a,pL;(b)p] € A and [¢L;(a)q,b] € B. By
assumption [a, pL;(b)p] = 0 and [gL;(a)q,b] = 0. This implies that pL;(b)p € 3(A)
and gL;(a)q € 3(B).

We define a map ¢;, : A — 3(U) by ¢;,(a) = 771 (qLi(a)q) + qL;(a)q where

7 is map defined in preliminaries. Therefore, on using L;(pxq) = pL;(z)q and
L;(qxp) = qL;(x)p, we have

Li(a) = ¢i,(a) = pLi(a)p +qLi(a)g — 7" (qLi(a)g) - qLi(a)g
= pLi(a)p — 7 (qLi(a)q) € A.
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This implies that L;(A) C A+ 3(Y) for all a € A. Similarly, we can define another
map ¢;, : B = 3(8) by ¢i, (b) = 7(pLi(b)p) + pLi(b)p such that L;(B) C B + 3(1)
for all b € B. (]

Remark 3.6. Let us define the map ~;, : & — 3(4) by

Vi, () = qLi(pxp)q + 7~ (qL;i (pxp)q) + pL;(qzq)p + 7(pLi(q2q)p).

Obviously, v;, (z) € 3(4) and v, ([[x, y], 2z]) = 0 for all z,y, z € 4L
Define another map &; : 4 — il as &;(z) = Li(z) — i, () for all z € 4L It is easy
to see that

&i(a) pLi(a)p — 77 (qLi(a)q) € A,
§&i(b) = qLi(b)g—T(pLi(b)p) € B,
fl(m) = Ll(m) c 1\/[7

&i(n) L;(n) eN

forallae A,be B,m € M and n € N.

Lemma 3.7. For anya € A,b€ B,m € M and n € N, we have

(i) &(am) = &(a)m + agi(m) + > 6r(a)ds(m),

r+s=1
7,8<1%

(i) &(mb) = &(m)b+m&i(b) + >° 6r(m)ds(b),

r4+s=1
r,s<1

(i12) &(bn) = &(b)n +0&i(n) + 32 6,(b)ds(n),

r+s=1
r,s<t

(iv) &i(na) = &(n)a+n&i(a) + > 6.(n)ds(a).

r+s=1
r,8<1%

Proof. (i) For a € A and m € M, we have

Cilam) = &([la,m], q])

Li(([a,m], q])

[[Li(a), m], q] + [[a,Li(m)], q] + [[a,m], Li(q)]
+ Y ([Le(a), La(m)], Le(q)]

r+s+t=i
[€i(@),m],a) + [la,&(m)],a) + D [[6-(a),65(m)], 6:(q)]
r+s+t;i
Gla)m + a&i(m) + Y d.(a)ds(m).

r4+s=1i
r,s<t
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Similarly, we can prove (ii).
(#i1) For b € B and n € N, we have
&i(bn) &i([[b,m], pl)
= Li([[b,n], p])
= [[Li(b), n], ] Hb L'( )}l + [[b; 7], Li(p)]
+ > n)], Le(p)]

r+s4+t=1
T,8,t<1

= [[El(b)’ n],p} + [[ba fz(n)]ap] + Z [[67‘(b>7 68(”)]7 5t(p>]

r+s+t=1i
T,8,t<%

= &b +bgn)+ > 6,.(b)
r+s=1

r,s<1

Similarly, we can prove (iv).

Lemma 3.8. For any a1,a2 € A and by,bs € B, we have

(i) &i(araz) = &(ar)ag + aréi(az) + > 6r(a1)ds(az),

r4+s=i
r,s<1%
(id) &i(b1ba) = &i(b1)ba + b1&i(b2) + D° 0(b1)ds(b2).
TTTSS<’L,L
Proof. For any aj,as € A and m € M,
&i(araam) = & (ar1a2)m + araxé;(m Z 0r(a1)ds(az)dy(m

r+s+t=1
r,8,t<1

On the other hand,

§i(aragm) = &i(ar)agm + a1&i(azm) Z 0r(a1)ds(az)de(m

r+s+t=1
r,s,t<1

= §i(a1)a2m+a1fi(a2)m+a1a2§i( )

tar Y 6(a2)ds(m)+ Y Gn(a1)d(az)di(m).

r+s=1 r+s+t=1i
r,s<1 T,8,t<1

Above relations implies that

{€i(araz) — &i(ar)az — aréi(az) Z 0r(a1)ds(az)}m = 0.

r+s=1
r,s<1

In the similar manner, we obtain

n{&i(ara) — &an)az — ar&i(az) — Y 6r(a1)ds(az)} = 0.

r+s=1
r,s<1

(3.3)
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Comparing (3.4) and (3.5) yield that

&ilaraz) = &i(ar)ag + a1&(az) Z dr(a1)d

r+s=1
r,s<1

for all a;,as € A. Similarly, we can show the other part. O

Lemma 3.9. For anya € A,m €M and b € B,

(1) &ila+m) —&i(a) — &(m) € 3(U),
(43) &i(m+b) —&(m) — &(b) € 3(L).

Proof. (i) For any a € A,m € M and using L;(¢) € 3(4), we have

&illlp,ml,a)) = Li(llp,a+ml,q))
= [lp.Lila+m)],q] + [[Li(p),a + m],q] + [[p,a + m], Li(q)]

B
+ > L), Ls(a+m)], Li(g)]

r4+s+t=1
r,s,t<1t

[P, &i(a +m)], q. (3.6)

Also,

&illlp,ml ql) = llp, La(m)], ]+[[Li(p),m}yq}+[[p,mLLi(Q)}

+ > m)], Le(q)]

r4+s+t=1
r,s,t<1t

From (3.6) and (3.7) it follows that [[;(a + m) — &(a) — &(m),q],p] = 0 which

i(m
gives p(&(a+m) —&i(a) — &(m))g+ q(&i(a+m) — & (a) — &(m))p = 0. Therefore,
we obtain that & (a+m)—&;(a) —&;(m) € A+B. Since [[ m'],q] = [[a+m,m'],q]
and L;(M) C M, L;(q) € 3(41), for any a € A and m,m’ € M.

i(am') = Li([la+m,m], q])
= [[Li (a+m) m'],q] + [[a +m, Li(m/)], q] + [[a +m,m'], Li(q)]
+ > ([Te(atm), Ly(m')], Le(g)]

r4+s+t=1
r,5,t<1%

[[&(a+m) s ql + [la +m, &(m")], q]
+ Y [6e(a+m),5:(m")], 6:(q)]

r+s+t z

= [[gz(a + m)? ml]v (]] + Ha, &(m/)}, (J} + Z 5r(a)58(ml)' (38)
7‘+s:‘i
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On the other hand,

gi(am/) = Li([[aﬂm/]v(ﬂ)
[Li(a),m']. q] + [[a,Li(m")], q] + [[a,m'], Li(q)]
+ 3 [L(@), Ly(m)], Lo(g)

7‘+s+t ’L
= [&(a),m],ql + [la,&(m)]oal + Y [[6:(a),65(m")],6,(q)]
T+s+t:i
= [[&i(a),m'],q] +[[a,&(m )], q Z 5, ( (3.9)
r4+s= z

Now from (3.8) and (3.9), we have [[{;(a + m) — &(a) — &(m),m'],q] = 0. This
together with &;(a +m) — &;(a) — &(m) € A + B gives that
(&i(a+m) = &(a) = &(m))m" = m/(§(a +m) — &(a) — &(m)) (3.10)
for alla € A and m,m’ € M. In the similar manner, from [[a+m,n'], q] = [[a, n'], q]
foralla € A,n’ € Nand m € M, we obtain that [[§;(a+m)—&;(a)—&(m),n],q] =0
which together with &;(a +m) — & (a) — &(m) € A + B yields
(i(a+m) = &(a) = &(m)n' = n'(&i(a+ m) = &(a) — &(m)) (3.11)
for all @ € A;n/ € N and m € M. Now combining (3.10) and (3.11), we get
&ila+m) —¢&(a) — & (m) € 3(Y). Similarly, we can find (41). O
Lemma 3.10. For anya € A,be B andn € N
(1) &ila+n) —&(a) — &i(n) € 3(Y),
(i) &i(n+0b) —&(n) — &(b) € 3(4).

Proof. (i) For any a € A,n € N and using L;(q) € 3(41), we have

fi([[p’n]’q]) = Li([[paa+n]vq])
([p, Li (a+n)] q) + [[Li(p), a +n], q] + [[p, a + n], Li(q)]
+ Y ([Le(p). Le(a+n)], Li(q)]

r+s+t=1

r,8,t<1%

[[p, & (a +n)], q]- (3.12)

Also,

§i([lp, nl, q]) [[p, Li(n)], ] + [[Li(p),n] q] + [lp,n]; Li(q)]

Li(n
+ > (L) )]s Le(q)]

r+s+t=1
r,s,t<1

[lp, & (n)], gl. (3.13)
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From (3.12) and (3.13) it follows that [[p,&;(a +n) — &(a) — &i(n)], ¢] = 0 which

yields that p(&;(a -+ n) — &(a) — &(n))q + q(&(a +n) — Ei(a) — E(n))p = 0. Hence,
we obtain that & (a + n) — &;(a) — &(n) € A + B. Since [[a,n'],q] = [[a + n,n/],q]
and L;(N) C N,L;(q) € 3({), for any a € A and n,n’ € N

&i(n'a) = Li([la+n,n'],q)
[[L (a+n) '], + [la +n,Li(n")], q] + [la+ n,n'], Li(q)]

+ > ([Lr(a+n), L)), Le(g)]

e
= [&(a+n), '] Q]+[[a+n &(n')], ql
+ Z 5 ( n')oi(a +n)
Tt
= [[{l(a—kn), ] ] [[a 61 7 Z 5 )
T
(3.14)
On the other hand,
i(n'a) = Li([[a,n],q])
- [[Li(a)>n/]7 CI] + [[avLi(n/)Lq] + Ha, n/]7L’L(Q)]
+ Y (L), L)), Li(q)]
s
= [[&i(a),n'], g+ [[a, &), + D 6. 5,(a). (3.15)
T+s 4

Now combining (3.14) and (3.15), we have [[§;(a + n) — &i(a) — &(n),n],q] = 0
which together with & (a +n) —&;(a) — &(n) € A + B yields that

(i(a+n) = &(a) = &(n))n" = n'(&(a+ n) = &i(a) — &(n)) (3.16)

for all @ € A and n,n’ € N. In the similar manner, from [[a+mn,m'], q] = [[a, '], ¢]
foralla € A,n € Nand m’ € M, we obtain that [[§;(a+n)—&;(a)—&(n),m'],q
combine this with &;(a + n) — &;(a) — &(n) € A + B yields that

(&i(a+n) = &i(a) = &(n))m = m'(&i(a+n) —&(a) — &(n)) (3.17)

for all @ € A;n € N and m’ € M. Now combining (3.16) and (3.17), we get
&ila+n)—&(a) — &(n) € 3(4). Similarly we can find (i7). O

Lemma 3.11. &; is additive on A,M,N and B respectively.
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Proof. For any my, ms € M, we have

§i(mi+mz2) = Li([[p+m1,q+ma2],q])
= [[Li(p+m1),q+ma], q] + [[p +m1, Li(g + m2)], q]
[[p+m1’q+m2] i(9)]

+ > T+ m1), Lo(g+ma)], Li(q)]

r+s+t=1
r,s,t<1

= [[ﬁi(p+m1)q+m2] q) + [[p +m1, &g +m2)l, q]
+ D [16:(p+ma), 8s(q + m2)], 8i(q)]

r+s+t=1i
r,8,t<1%

= [[&(p) + &i(m1),q + ma], q] + [[p +m1,&i(q) + §i(m2)], q]

Hgi(ml)v(I"_m?]aq] + Hp"‘ml,fi(mQ)]a(I]
= &(ma) + &(mo).

(3.18)

which implies that ; is additive on M. In similar manner, we can obtain that &;

is additive on N.
Now using Lemma 3.7 and (3.12), we find that

§i((ar +az)m) = &(aim) + &i(agm)
Ei(ar)m + &i(az)m + ar&i(m) + azéi(m)

+ Z dr(a1)ds(m) + Z dr(az)ds(m).

r+s=i r+s=1
r,8<% r,8<1%
On the other hand,
&i((ar +a2)m) = &(ap +az)m+ (a1 + az)éi(m Z §r(a1 + az)é
r+s=1
r,s<1

= &i(ar 4+ az)m + a1&(m) + axé;(m)

+ ) e(a)du(m)+ > b,(az)ds(m

r4+s=1 r4+s=1
r,8<1 r,8<1

Above two expressions implies that
i(ar + az)m = &i(ar)m + &i(az)m.

In the similar way,
n&i(ar + az) = n&;(a1) + n&;(az).

(3.19)

s(m)

(3.20)

(3.21)

(3.22)

Last two equations together yield that & (a1+a2) = & (a1)+&;(az) for all ag,as € A

which proves that &; is additive on A. Similarly, &; is additive on B.

Lemma 3.12. Foranya € A,beB,ne N and meM

(@) &ila+m+b) —¢&i(a) —&i(m) — &(b) € 3(W),
(i) &i(a+n+b) —¢&i(a) = &(n) — &(b) € 3(40).

O
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Proof. (i) For any a € A,b € B,m € M and using L;(p),L;(¢) € 3(4l), we have

&i([lp,m], ql)
= Li([[p,a+m+10],q])
= [[p,Lila+m+b)],q] + [Li(p), a+m+b] q]

Hlpa+m+0, L@+ > Ly(a +m +b)],Ls(q)]
TIiIiZ’
= [p.&la+m+b),q. (3.23)
Also,
&([[p,m], q) :[LL(md+m0quHﬂ,wLMH
+ > m)], Ly(q)]
Tﬂy
= [[p,&(m)], q]- (3.24)

From (3.23) and (3.24) it follows that [[p, & (a+m—+b) —&;(a) —&(m)—&(b )] q=0
which gives p(&;(a+m+b) —&i(a) =& (m) —&i(b))g+q(&i(a+m+b) —&i(a) —&i(m) —

&i(b))p = 0. Therefore, we obtain that &;(a+m—+b) —&;(a) —&;(m) —&;(b) € A+B.
Since am’ — m'b = [[a + m + b,m'],q] and L;(M) C M,L;(q) € 3(4), for any

acAbeBand m,m' eM

&(am' —m'D)
— Li((la+m+bm7],q)
= [[Li(a+m+b),m],q] + [[a+m + b, Li(m")],q]

Hlatm+bm] L@+ 3 [Lolatm+b),Lym)], Lu(g)

r+s+t=1
r,8,t<1i

=[mw+m+w m'], q] + [[a +m +b,&(m")], ¢
+ Y [Be(a+m+b),8:(m")], 6:(q)]

r4+st+t=1
r,5,t<t

= [[&i(a+m+b),m'],q] +[[a+b,&(m")], ]

+ D Se(a)ds(m') = D 8 (m')ds(b)

r+s=1 r+s=1
7,8,<% r,s<1
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On the other hand,
Cilam' —m'b) = &am') = &(m'b)
= &(a)ym' —m'&((b) + a&i(m') — & (m')b

+ Z 6T(a)6s(m/)_ Z 6r(m )6 (b)

r4+s=1 r4+s=1
7,8,<1 r,s<1

= [[&(a),m], ] + [[a, &i(m ’)],] [[&: (), m'], q]
[b éz }7q Z 6 />7 Z 5r(m )5 (b)

r4+s=1 r4+s=i
r,5,<% r,s<1

(3.25)
Now from (3.25) and (3.25), we have [[§;(a+m~+b)—&;(a) =& (m)—&;(b),m],q] =0
which together with & (a +m +b) — &;(a) — &(m) — &(b) € A + B gives that
(ila+m+b)=&i(a) = &(m) = &(b))m' = m/(§i(a+m+Db) = &i(a) = &(m) = &(D))

(3.26)
foralla € A,b € B and m,m’ € M. In the similar manner, from [[a+m+b,n'],q] =
[la+b,n'],¢] for alla € A,n’ € N and m € M, we obtain that [[;(a+m+b)—&(a)—
&i(m)—&(b),n'],q] = 0, which together with & (a+m+b) —§;(a) —&(m)—&(b) €
A + B yields that
(&i(a+m+b)—&(a) = &(m) = &(b))n" = n(&(a+m+b) - &(a) — &i(m) — &(D))

(3.27)
for all a € A,;b € B,n’ € N and m € M. Now combining (3.26) and (3.27), we get
&ila+m+b)—&(a) — & (m) —&(b) € 3(LU). Similarly we can find other case. [

Lemma 3.13. For anyn € N and m € M, &;(m + n) = &(m) + &(n).
Proof. Using Lemmas 3.9 and 3.10,we have
§i(m+n) = Li([lp+m,p—nl,p])
= [Li(p+m),p = nl,p| + [[p + m,Li(p — n)], pl
+[[p+m p—n},Li(p)]
+ Y ([Le(p+m), La(p — n)], Ly(p)]

r+s+t=1i
T,8,t<1

= [[fz(erm)p n),p] + [[p +m, &(p —n)], p]
+ Y [6e(p+m),0s(p—n)],6(p)]

r4+s+t=1i
r,5,t<t

= [[&i(p) +&(m),p —nl,p] + [[p + m, &(p) — &i(n)], p]
= [[&(m),p —n|,p] + [[p +m, =&(n)], p]
= &i(m)+&(n).
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Lemma 3.14. For anya € A,b€ B,n € N and m € M,

Cila+m+n+b)—&la) —&(m) —&(n) —&(b) € 3(U).
Proof. Consider
&(m+n) = Li([lp,a+m+n+0b4q])

= [lp,Li(a+m+n+0b)],q] + [[Li(p),a +m+n+b],q]
+[[pa+m+n—|—b] i(q)]

+ Ls(a+m +n+b)],Li(q)]
’Titi/
= [p,&(a+m+n+0b),ql. (3.28)

On the other hand,

LG(m+n) = &(m)+&(n)
&i[lp. al, ) + &([[p. m], ) + &([[p. n], q]) + & ([[p, b], a])
= [lp.Li(a)], ] [[P L( )] q] + [[p, Li(n)], a] + [[p, Li(b)], a])
+ > L@l + Y [[Le(p), Ls(m)], Li(q)]

Tiiti/ riattes
+ Z LL@]l+ S (L), Lo(b)), Le(q)]
= [[p,&(a) + &(m) + &(n) + &(b)], ql- (3.29)

In view of (3.28) and (3.29), we have [[p,&(a +m +n + b) — &( ) — &(m) —
§i(n) — &i(b)],q] = 0 which gives p(&i(a +m +n +b) = &i(a) — &i(m) — &(n) —
E(0)q + a(€ila +m +n -+ b) — &(a) — &(m) — &(n) — E:(b))p = 0. Thorefore,
we obtain that &;(a + m +n +b) — &(a) — &(m) — &(n) — &(b) € A + B. Since
am’ — m'b = [[a+m + n+ bm'],q] and L;(M) C M,L;(q) € 3(4), for any
a€AbeBand m,m e M

Gl —m't) = Li(fla+m+n+bm],q)
= [[Li(a+m+n+b),m],q + [[a+m+n+bLi(m)],q
+[[a+m+n+bm] i(q)]

+ Z L,(a+m+n+b),Ls(m")],Li(q)]

r+s+t=1
r,8,t<1
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:[mw+m+n+w m'],q] + [[a + m +n +b,&(m)),
+ Y [6e(a+m+n+b),6.(m))],6(q)]

g
= [&(a+m+n+b),m'],q + [[a+b&(m)], q]
+ ) e(a)di(m) = > 6.(m!)és(b). (3.30)
r+s=1 r+s=1
r,5,<% r,8<i

On the other hand,
Cilam' —m'b) = &am') = &(m'D)
= &(a)ym' —m'&(b) + a&i(m') — &(m')b

+ Y Oe(a)di(m!) = > 6.(m")ss(b

rr-i-ss<=ii rr—i-ss<=ii
= [l&i(a), '] ] [[a, &i(m ’)],] [[&:(b), m], q]
&g+ Y e@)dsm) — S 6,(m')s(b)
r4+s= z r+s:'7i

(3.31)

Now from (3.30) and (3.31), we have [[{;(a +m +n+b) —&(a) — &(m) — &(n) —
&i(b),m'], q] = 0 which together with & (a+m+n+b)—&;(a)—&(m)—&(n)—&(b) €
A + B gives that

(&(a+m+n+b)—&(a) = &(m) — &(n) —&(b)m'

=m'(&a+m+n+b) —&a) — &(m) — &(n) — &) (3.32)

for all @ € A,;b € B and m,m’ € M. In the similar manner, from [[a + m +
n+b,n'],q] = [[a +b,n'],q] for all a € A;n’ € N and m € M, we obtain that
[[€i(a+m+n+b)—&(a) —&(m) —&(n) — &(b),n], q] = 0 which together with
Cila+m+n+0b)—&i(a) = &(m) — &(n) — &(b) € A + B gives
(&la+m+n+b) —&(a) = &(m) — &i(n) = &()n/
= (& m 4 B) o) — &(m) — &(n) — &)

for all a € A;b € B,n’ € N and m € M. Now combining (3.32) and (3.33), we get
Sila+m+n+0b)—¢&(a) —&(m) —&(n) —&(b) € 3(4). O

(3.33)

Lemma 3.15. For any n € N and m € M, we have

(i) &i(mn) = &(m)n +m&;(n) + Z 6 (m)ds(n),
(i) &i(nm) =& (n)m +n&i(m) + > ‘5r(m)5s(n)-
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Proof. For any m,m’ € M and n € N, we have

117

&i([lm,n],m']) = [[Li(m),n],m'] HmL( ), m'] + [[m, n], Li(m")]

+ > n)], Ly(m')]

r+s+t=1
T,8,t<1

[[€:(m), n], m'} + [[m &( ), m'] + [[m, nl, &(m

+ Z )]s 6(m")].

r+s+t=i
T,8,t<1

On the other way,

&i([lm,n],m']) = &(mnm’+m'nm)

)]

(3.34)

= &(mn)m' +mn&(m') +m'&(nm) + & (m')nm

+ Z 8y (mn)ds(m') + Z 5-(m")ds(nm)

r+s=1 r+s=1
r,8<1 7,8<1%

From the above two expressions, we get

[i(mn) — & (nm) = [&(m), n] = [m, & ()] = Y [6r(m), 5s(n)],m'] = 0.

r4+s=1
7r,8<%

Similarly, we have

[€i(mn) — & (nm) — [&(m), n] = [m,&(n)] = Y [6:(m), 8s(n)],n'] = 0.

r+s=i
r,8<1t
From (3.36) and (3.37) it follows that
{&i(mn) = &(m)n —m&(n) — Y 6,
Tr+ss<zz
+{=&(nm) + &n)m +n&(m) + > 5.(n)ds(m)} € 3(40).
r4+s=1
r,5<1

From the assumption A does not contain nonzero central ideals. Assume

wlm.n) = &(mn) — &(m)n —m&(n) + 3 8,(m

r+s=1
r,s<1

(3.35)

(3.36)

(3.37)

(3.38)

that
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Note that w(m,n) € 3(A) for all m € M and n € N. On using Lemma 3.7, we
obtain that

wlam,n) = &(amn) —&(am)n —amé;(n Z or(am)

r4+s=1
r,s<1

= &i(a)mn + a&;(mn) — & (a)mn — a&;(m)n — amé&;(n)

+ Z 5r(a)ds(m)de(n)

r+s+t=1
r,8,t<1%

a&;(m)n + amé&;(n) + aw(m, n) — a&;(m)n — amé&;(n)
= aw(m,n).
This implies Aw(m,n) is a central ideal of A. Therefore, w(m,n) = 0, that is,
&i(mn) = &(m)n +mé&(n) + Y 6 (
r4+s= _1
r,8<1%
for all m € M and n € N. Similarly, we have
&i(nm) = &(n)m +n&(m) + Y 6 (

r+s=1
r,s<1?

for all m € M and n € N. O
Remark 3.16. Now, in view of Lemma 3.14 we define a map ~;, : 4 — 3(4f) by

iy (2) = &i(2) — &i(pap) — &i(pr) — &ilqp) — &igzq).
Clearly, 7i,(z) € 3(U) and 7;,(A) = 7i, (M) = 7;,(N) = 73,(B) = 0. Now we
are ready to define a map 0; : & — U by §;(x) = &(x) — v, (x). Then L;(z) =
0i(x) + iy () + iy (x) = 6i(x) 4 7i(x), where vi(x) = 73, (€) + 7, (x) is a mapping

from 4 to its center.

Lemma 3.17. 6;(a+m+n+0b) =d;(a) +d;(m)+0;(n) +6;(b) for alla € A,b e
B,m &M and n € N.

Proof. 1t is clear that

dila+m+n+b = &la+m+n+bdb) —vy,(a+m+n+0b)
= &ila+m+n+b) —&la+m+n+b)
+&i(a) + &i(m) + &(n) + &i(b)
§ia) + &(m) +&(n) + &(b)
= 0;(a) + d;(m) + 0;(n) + 0;(b)
foralla e A,be B,m &M and n € N. O

Now we are well equipped to prove our main theorem.
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Proof of Theorem 3.1. For any x,y € 4. Suppose that x = a3 + m1 +n; + b; and
T = as + mo + ny + by where ay,as € A, by,bs € B,ny,ns € N and mq, ms € M.

di(x +y)

= d;(a1 +m1 +n1+ b1+ az+me+ng+ba)
0;(a1 + a2) + §;(m1 + ma) + 6;(n1 + na) + 0;(by + be)
= d;i(a1) + 0i(m1) + d;(n1) + 0;(b1)
+8;i(az) + di(m2) + di(n2) + 6:(b2)
= di(ar +my +ny +b1) + i (az + ma + ng + by)
= di(z) +4i(y).

Thus, §; is additive on 4. Also, from Lemmas 3.7, 3.8 and 3.17

di(ry)

0i(araa + aymsg + ming + mibe + niag + nyms + bing + b1ba)
0;(arag + mins) + d;(a1ma + mqbs)

+d;(n1ag + bing) + §;(n1ms + b1b2)

0;(arag) + 0;(ayms) + d;(n1ag) + §;(n1ms)

+d;(ming) + 0;(m1b2) + §;(b1ng) + 6;(b1b2)

0; (a1>a2 +a1(5 a2 Z (5 a1 (J,Q + 6; (al)mg + a16; (mg)
r4+s=1

r,s<i
+ Z dr(a1)ds(ma) + 6;(n1)as + ni6;(asz) Z 0r(n1)d
r+s .z r+s "L
7r,8<1% r,5<1
+(§ (nl)m2—|—n15 m2 Z 5 Tll mg +5 (ml)ng
Tr+ss<i2
+m15 77,2 Z 6 m1 TLQ +5 (ml)bg +m15 (b2)
Tr+ss<7,l
+Z5 m1 bg +5(b1)n2+b1 25 b1
r4+s= _z r4+s= _z
r,s<t r,8<t
+0i(b1)ba + bidi(b2) + > 6,(b1)d
r4+s=i
r,s<1

(0i(a1) + 05 (ma) + 05 (n1) + 6;(b1)) (az + ma + na + b2)
+(a1 + m1 + n1 + b1)(8;(az) + 6;(m2) + 6;(n2) + 6;(b2))

+ Y {00(@r) + 8,(ma) + 6n(m1) + 6,(b1)}
r4+s=1

r,5<%

{ds(az) + s (mz)+6 (n2)+5( )}
Si(z)y +adi(y) + Y On(x

r+s=1
r,8<1


http://ijmsi.ir/article-1-2021-en.html

[ Downloaded from ijmsi.ir on 2025-09-21 ]

120 M. Ashraf, A. Jabeen, F. Wei

This shows that {d;};en is an additive higher derivation. Now, we have to prove
that ~y; vanishes on all Lie triple products of . It is easy to see that ;(x) € 3(4)
for all x € 4. Further,

villlz,yl,2]) = Li([[=,9],2]) — 6:([[z, 9], 2])
= [[Li(®),y], 2] + [[2,Li(y)], 2] + [z, 4], Li(2)]
—[[6: (@), y], 2] — [z, 6:(y)], 2] — [[=, 9], 6s(2)]
= 0.
for all x,y, z € 4. Hence, this proves the required result. O

In particular, we have the following corollary.

Corollary 3.18. [1, Theorem 3.1] Let T be a 2-torsion free triangular algebra and
£ = {L; }ien be a multiplicative Lie triple higher derivation on T. Let us assume
that

(1) Ta(3(%)) = 3(A) and m3(3(%)) = 3(B),

(i7) either A or B does not contain nonzero central ideals,

Then every multiplicative Lie triple higher derivation £ = {L;};en is of the stan-
dard form, i.e., each component L; has the form L; = 6; + v;, where {6; }ien s an
additive higher derivation on T and {v;}icn s a sequence of mapping v; : T — 3(%)
vanishing at Lie triple products in <.
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