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ABSTRACT. This article is devoted to investigate the anlysis for the so-
lution for a class of linear and nonlinear Caputo fractional Fredholm-
Volterra integro-differential equations with multiple delays. The conver-

gence and stability analysis for these equations are investigated.
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1. INTRODUCTION

Recently, investigations into fractional calculus showed that it can used in
many physical systems more accurately formulation of fractional derivatives [1].
It appears that many physical processes exhibit a fractal order behavior that
may be different according to space or time. Many scientists and mathemati-
cians are attracted to studying the stability of fractional equations, as well as
the convergence of the solutions to these equations in some different methods

[2].
*Corresponding Author

Received 19 November 2020; Accepted 02 August 2022
©2025 Academic Center for Education, Culture and Research TMU
161


http://ijmsi.ir/article-1-2016-en.html

[ Downloaded from ijmsi.ir on 2025-09-21 ]

162 K. R. Raslan, A. A. Soliman, A. M. Abdallah

Finite delay depicts the delay of response of re-action and appears in many
engineering applications such as chemical control systems, laser models aircraft,
biology, medicine and internet [3].

Soliman et. al. [4, 5, 6] considered the fractional integro-differential equa-
tions with time constant and variable delays. The existence and uniqueness of
solutions of the model system and also the stability of equilibrium points are
shown. The motivation behind delay fractional order system are discussed in
8]

In this manuscript our main aim is to show the existence of the solutions of
the fractional multiple delay integro-differential equations

t b
DBy(t) :f(t,y(t—T(t»,y(t—nLy(Tiz), / G(t, 2, y(x))dz, / Hit, o, y(x)) dx),
B € (0,1),t € [to — 7, to0] (1.1)

with the initial conditions

y(to) = @(y), (1.2)

where DAy refers to the f— th fractional derivative of the anonymous function
y(t) € Y = C([a,b],R7) which characterized by the Caputo operator, 7(t) is
the time varying delay (continuous delay function), 71, 72 are the constant and
propotional time delays respectively, 72 > 0, f : [a,0] XY XY xY = Y is a
continuous function, G, H : [a,b]> x Y — Y are nonlinear Lipschitz continuous
functions of y(t) and ® : Y — R™T is a continuous function.

Let us suppose the following conditions.
There exists constants Cy > 0, Cqg > 0, C- > 0, C;, >0, C;, >0, Cy > 0.
Cs >0

(1) For each Y1,Y2, 21, 22, W1, W2, hlahQaglag27f17 f2 ey

|f(t,y1, 21, w1, b, 91, f1) — f(t y2, 22, w2, ha, g2, f2)| < Cy [|y1 — Yol + 21 — 22]

T s — wal + [n — hal + |91 — go| + 11 — fzq

(1.3)

(2)
| /at G(t,z,y(x))ds — /at G(t,z,2(z))dz| < Coly — 2| (1.4)

3)
| /abH(t,x,y(x)) dx — /ab H(t,z,z(z)) dz| < Cyly — 2| (1.5)

(4)
ly(t —7(8)) — 2(t = 7(1))| < Crly — 2| (1.6)
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)
[yt =) = 2(t = )| < Crly— =] (1.7

O
W) — ()| < Crly— 4 (1.9

@
|®(y) — ®(2)] < Caly — 2. (1.9)

Theorem 1.1. The equation (1.1) is equivalent to
y(t) zfﬂf(t,y(t_T(t)) (t =7, u(— / Gt 7, y(w))da, / Ht, o, y(= ) (1.10)
Proof. Now, we integrate two both sides of equation (1.1) to obtain
I DPy(t) :If<t,y(t—7'(t))7 (t—m1), ) / G(t,z,y(x))dz, / H(t,z,y(z)) dac)
Thus, we get
) ‘ ¢ b
I'Py)y—v = If(t»y(t —7(1),y(t - T1)7y(*)7/ G(t,%y(ﬂﬁ))d%/ H(t, @, y(x)) dﬂﬁ)-
T2 a a
On employing I?, we have
1 t t b
10 = 1411 (130 = 7O (e = )5, [ Gleaptede, [ty do)
T2 a a
9 t ds
* ﬁ/o (t—s)ip ()
So that,

t b
Iy(t) = Wlf(t,y(t—T(t»,y(t—n),y(%), [ Gttayends, [ ez.ye) dw)

917 (1.12)
rB+1) '
With the use of differentiation, we get
y()—[ﬁf<ty(t77—(t))yt7ﬁ /Gtwyx)dm/H(tzy >
9 A1
> 1.13
) (1:19)
where ¥ is a constant, then at ¢ = a we deduce that (1.1) is equivalent to
(1.10). a

Lemma 1.2. A function y € Y is a solution of the problem (1.1) if and only
if it is a solution of the delay integro-differential equation.
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2. METHODOLOGY

We managed to present existence and uniqueness of the solution for the
equation (1.10). Also, we investigate the stability of much more complicated
fractional multiple delay integro-differential equations. Let p: Y — Y, for any
y € Y. Now, we establish the following theorem for the fixed point p.

Theorem 2.1. The operator p maps Y into itself and it is also continuous on

[a,b].

Proof. From Cauchy Schwartz inequality,

Loy = ||<I><y>+%ﬁ) / (tS)Bl[f<s,y(87(S)), / (s, 2 u(@))de

w2, [ Gl (o), | " Hs,zy(x) dw)dsn

<cllyll+ F(Jgnfl)tﬂlly(s —7(s))ICelylCrullyl

<alyll < e (2.1)

Thus, p maps Y into itself. Also, A becomes uniformly bounded. Suppose
a sufficiently small number n > 0,

lowte+m) = pu(0)l = 501 [ (e s>ﬁ—1f(s,y<<s+n> (s 4 )

(sm),

,y((s+n)fﬁ),y( T

y " H((s + ).z y(@)) dr, / S G<<s+n>,x,y<x>>dx) ds||
- / (i s)fff—lf(s,y(s ~ (). [ G5, 2, y(@))dx

s b
(s (), [ syt dx)dsm. (2.2)
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Clearly,
1 t
ey (t +n) — py(®)| < @/ (t— )P y((s +n) — (s +n))) — y(s — 7(s))||
s+ m) = 7) =yl =)l + (=" —u( 2]

+ / G((5 + ), 2,y(x)) — G(s, 2, y())da]

b
+|I/ H((s +n),z,y(z)) — H(s, z, y(x)) dz|/ds

Crt
< F(ﬂ ) {Hy(( +n)—7((s+n)) —y(s—7(s))||
+ Cally(s +n) — y(S))” + CHHy(S + n) _ y(s))”] ) (2.3)

Consequently, we thus conclude that

1< G’
T T(B+1)
< Dly(s +n) —y()ll, (2.4)

lpy(t +n) — py(t) [Cr +Cr +Cr +Cg + CH} (s +n) —y()I

where ¢ € [a,b], D = max{% {CT +Cr +Cr, +Ca + C’H] },0<D<1
It follows that,
oy (t +n) — py(t)[| — 0 as n — oo.

Then, py(t) is continuous on [a,b]. Our approach for proving that p is contin-
uous, we assume that y,, converge to y, Vn € N. Then

IN

o) =yl < 190) = )l + 125 (1t = r(O)nt = 700D, [ Gltszun ()
) " H(t,2, o 2)) ao) = (o= ), [ Gt y(@) e
, y(— —u(— / H(t, o, y(x)) dm)

if we follow the conditions (1)- (7), we arrive at

C
loyn () —pyOll < Callyn —yll + = |(Cr + Cry + Cry + Cry + Cry)llyn — vl

ol
+ Curllyn —ull + Collyn — yn]

This is equivalent to
c
lom®) = o)l < [Ca 5160+ Cr 4 o+ Cor -+ Gl o =l
Hence, we have py, (t) — py(t).

2.1. Existence and uniqueness of the solution. Here, we will check the
existence and uniqueness of solution for the fractional integro-differential equa-
tion with multiple delays (constant, proportional and variable).
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Theorem 2.2. Assume that the conditions (1)-(5) hold, then the non-linear
fractional delay integro-differential equation (1.1) has at least a unique solution
yey.

Proof. By analogous proof to the continuity of p operator.
lou(®) = p=(0)] = 511 [ (e s>ﬁ-1f(s,y<<s> —7(s))
ds=mu D). [ (s, y(a) de [ 6t aatanis )as)
S Al ROy e i
(s =m), (), / " H(s,z,2(2) dx> l1ds + [[B(y) — B(2)].

(2.5)
For short,
loy(®) — p=(t)]] < %ﬁ) / (t = 8 y((s) — 7()) — 2(5 — 7(5))]
-/ (s, y(@) — Cls,, 2(a)da]
ab
[ s 9(@)) = Hsyz,2(0)) dallds
+ [ ®(y) — B + lly(s — 1) — 2(s — )| + ||y<j—2> - z(%)l\
B
< i s = 76 = 25 = 7o

+Cally(s) = 2(s)ll + Crlly(s) — Z(S)II} + Colly — 2. (2:6)

As a result, we obtain

B
lou(t) — p()]) < = [CT f et CH] lu(s) — =(s)]

T(B+1)
+ C prilly — 2|
< Ully(s) = z(s)l; (2.7)

Cyb?
L(B+1)

that 0 < U < 1. This means that p is Lipschitz on Y with Lipschitz constant
U. Also, p is a well known fixed point as a consequence of fixed point theorem.

where ¢ € [a,b], U = max{ {CT +Cr, +Cr, +Ca+Cpr | +Cs}, provided

i.e., p is a contraction mapping. So, Eq.(1.1) has at least a unique solution
yevy. (I
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Lemma 2.3. Suppose that {y(t)} is a continuous function on [a, b], it satisfies

DAy(t) = f(t,y(t )yt — 1)y, [ Gt @ y(@))da, [P H (7, y(a)) dw)

y(a) = ®(y). a € (0, 1),
Further, |y(t1) — y(t2)| < q. Then {y(t)} is equicontinuous on [a,b].
Proof. Without loss of generality, for t1,%2 € [a, b] such that ¢; < ta, we get

lpy(t2) —py(t1)l = [2(y(t1)) — 2(y(t2))l

s i [0 [ (st = ro, [ Gt

, oyt — 1), )/ H(z,w,y(w dwqu
_ @ / (t2 — s)P1 {lf(S,y(s —7(s)), /: Gz, w, y(w))dw
;o Yt —72), / H(z,w,y(w dw|:|ds

< @/O [(tl—s> = (=9 i (svuts = 7o)

- " G, w, y(w))duw, / " H(aw,y(w) dulds

1 t2 .
i r(g) /i, (t2 =" [lf(s y(sz(s))vy(S*Tl),y(g)
v b
; / G(z,w,y(w))dw,/ H(z,w,y(w)) dwqu‘*‘C@Hy—zH
Iflloo [.5 .8
< C¢+F(B+1) [t1—t2+2(t2—t1)5}7
o0 (2.8)

whenever to — t1, ¢ > 0, where

[flloo = sup, [f(E, )

t€la,
Thus, py(t) is equicontinuous function in U. This means that p is relatively com-

pact. Hence, p is compact. In view of Banach contraction mapping theorem, p
has at least one fixed point (solution of (1.1)) in Y. O

Lemma 2.4. If the conditions (1)-(5) satisfied, then the non-linear equation
(1.1) has a unique solution provided

max{

o
— I |C,+C, +C,+Ce+Cp| +Cs)} < 1. 2.9
F(B + 1) 2 G H <I>} ( )

Our following attention is focused on checking the stability of the solution
y(t) for Eq. (1.1) in the frame of Ulam-Hyers and Ulam-Hyers-Rassias.
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3. STABILITY OF THE SOLUTION FOR EqQ. (1.1).

Theorem 3.1. Suupose that the conditions (1)-(5) hold. Then the non-linear
fractional multiple delay integro-differential equation (1.1) is Ulam-Hyers sta-
ble.

Proof. If y(t) € Y is a solution of equation (1.1), V(s) is a continuous and non
negative function such that

sup( / (t — 5)5~1) W (s)]ds) < oo,

|[DPy(t) = f(t,y(t—ﬂ-(t)) y(t —m1), y / G(t,z,y(z))dz, / H(t,z,y(z)) dx)\ <e.

Now, we are going to perform the integral operator I” on both sides of above
equation, we reach

ly(t) - ¢@%-/?VﬂwlfGy®—T /‘Gsp,@»@

) y(tf’rl / Hspv dp>|

VORI 1 p—— / <t—s>5 1f<s y(s — (s) / G5, p,u(0))dp

<
=
I
;‘
\
=
Cn
?
%
~——

eth
L(B+1)
eE11(1), (3.1)

IN

for z(t) € Y, it can be written as

z(t) = <I)(v)—|—1/t(t—s)ﬁ l(f(szs—r /Gsp7

,  z2(t—m),z / H(s,p,z dp)ds
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The difference |y(t) — z(¢)] is given as

W) — =0 = (e — y(0) + () — (1)
< vt - o) - i | <t—s>5—1(f<s,y<s—r<s>>
N R e / H(s, .y dp)ds|
1

G /Ot(t — )Pt (f(s, 2(s = 7(s))

/ G(s,p,z(p))dp, z(t —71),2 / H(s,p,v dp)d5|

or equivalently

ly(t) — z(t)] < F(ﬁ+1)+|¢)(y)_q}('z)‘
1t e
+ g =97 [ G — GGz as
Lot e[ B
i @/o“ ?) V (H(s,p,y(p) H(s,p,z(p»)dp}ds
+ L/f(t—s)ﬁfl{y(s_n)—z(s_71)+y(i)_z(i)dp}ds
r'(B) Jo - =
eb” Cr [* _
< F(a+1)+ @ 0 (t_s)ﬁ 1(CG+CH)‘y—Z|dS+Cq>|y—z‘
ebP R t VT .
< Tt e, sl Caly — 2.
In view of Gronwall’s lemma, yields
ebB R t
=20 < From elpgg | (=9 s+ Caly

eE11(b)exp(E11(b)R) + Coly — 2|
ek, (3.2)

VARV

where K > 0, R = Cy(Cg + Cg) such that
ly(t) —2(t)] < K, (3-3)

As a result, the problem (1.1) is stable in the sense of Ulam-Hyers. This
completes the proof. O

Theorem 3.2. Suupose that the conditions (1)-(7) satisfied, P(t) € Y is an
increasing function and 3 C, > 0 such that I° < C,P(t) for any t € [a,b].
Then the non-linear fractional equation (1.1) is Ulam-Hyers-Rassias stable.

Proof. Let w € Y be a solution of the following inequality

t b
D% w(t)— f[t,w(t—’r(t)),/ G(t,m,w(x))dz,/ H(t,z,w(z)) de|| < eP(t).  (3.4)
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Further, for any t € [a,b], € > 0. Assume that u € U is the solution of (1.1).
Now, integrate (1.1), that is

ot — @@O—feﬂﬂs—ﬂ@)w@—Tl %), [ Gs.puto)

/Hsp, dp)

< o [e-tews
< eI’P(t)
< eCLP(t).
It can be easily noticed that
[wt) —y()] = |wt)—w(t) +wt) —y)

IN

o) — B(w) F(B)/< = (f(suts = ()
; /aG(Svp,w(p))dn /a H{(s,p,w(p)) dp)d8|

1ot 6-1
Collw — y\\+@/(t78) l[w(s = 7(s)) —y(s = 7(s))llds

/(“”ﬁ I/S(HGSP, (1) — Gs, p,y(p»ndp)ds

+

+

n / (=97 [ (s =7 = vt = 7+ ()~ u(Dllap)as
T2 T2
b
s L= [ (1umwte) — HGspy(o)ldp ) s
Hence,
I o
lw®) —y@®)l < CpeP(t) + 7/ (t =) E(s)lw — y|ds.
L'(B) Jo
It directly follows from Pachpatte’s lemma that
[w(t) —y@®)|| < CeP(t), (3.5)
for C' > 0 which ends the proof. O

Let us extend our results to asymptotically stable solution. For that, we
shall perform the absolute value for the solution of (1.1)

MO @@n+F@%Aa—@“{uﬁwu—ﬂmwa—nxmﬁ>

, /atG(t,x,y(x))dz,/abH(t,x,y(x)) dx)] ds.

In fact, by means of Cauchy Schwartz inequality, we deduce

W) < @wn+i%§ﬁca
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where

t 252 ) 4B8—0.5
J:/t—s 2, Jr = ——
0( ) I'(1-2p)

t t b
G= /O (et = 7(0). 9t = )u( ), / G(t, 2, y(x))da, / H(t, 2, y()) dr)[2ds.

Now, we observe that |y(¢)| — 0 whenever ¢ — co. Therefore, the zero solution
of (1.1) is said to be asymptotically stable.

4. AN ILLUSTRATIVE EXAMPLE

Here, we give example which clarifying the gained results.

EXAMPLE 4.1.
xu(x) t

T2

D%u(t) — 2u(t) = u(x — 1) — +ult—m)+ 2/:c u(—)2dt + f(z) (4.1)

where 7(t) = Lnt, 7y = 1, 75 = 2, f(x) = 1+ (222 — 1 — 2=1) 4(0) = 0. The

xT e
exact solution at o« = 1 is xe®.
Solution:

RGu(®)((2)" +1) = RGI2u(t) + u(z — 1) - zu(z)

bt —m) 42 /z w(y2dt + f(z)).
0o T
(4.2)
By using Ramadan Group properties, RGAD method [7] and we get the ana-
lytic solution
u(t) = te. (4.3)

This is the required solution.

Remark 4.2. If the multiple delay becomes constant delay only in the studded
problem (1.1), the problem converts as the same [4]. Also, if If the multiple
delay becomes time-varying (variable) delay only in the studded problem (1.1),
the problem converts as the same [5, 6].
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