2-Irreducible and Strongly 2-Irreducible Submodules of a Module

F. Farshadifar ${ }^{a *}$, H. Ansari-Toroghy ${ }^{b}$
${ }^{a}$ Department of Mathematics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran
${ }^{b}$ Department of Pure Mathematics, Faculty of Mathematical Sciences University of Guilan, Rasht, Iran
E-mail: f.farshadifar@cfu.ac.ir
E-mail: ansari@guilan.ac.ir

Abstract

Let R be a commutative ring with identity and M be an R-module. In this paper, we will introduce the concept of 2 -irreducible (resp., strongly 2-irreducible) submodules of M as a generalization of irreducible (resp., strongly irreducible) submodules of M and investigated some properties of these classes of modules.

Keywords: Irreducible ideal, Strongly 2-irreducible ideal, 2-irreducible submodule, Strongly 2-irreducible submodule.

2000 Mathematics subject classification: 13C13, 13C99.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers.

An ideal I of R is said to be irreducible if $I=J_{1} \cap J_{2}$ for ideals J_{1} and J_{2} of R implies that either $I=J_{1}$ or $I=J_{2}$. A proper ideal I of R is said to be strongly irreducible if for ideals J_{1}, J_{2} of $R, J_{1} \cap J_{2} \subseteq I$ implies that $J_{1} \subseteq I$ or $J_{2} \subseteq I$ [12]. An ideal I of R is said to be 2 -irreducible if whenever $I=J_{1} \cap J_{2} \cap J_{3}$ for

[^0]ideals J_{1}, J_{1} and J_{3} of R, then either $I=J_{1} \cap J_{2}$ or $I=J_{1} \cap J_{3}$ or $I=J_{2} \cap J_{3}$. Clearly, any irreducible ideal is a 2-irreducible ideal [21].

A proper submodule N of an R-module M is said to be irreducible (resp., strongly irreducible) if for submodules H_{1} and H_{2} of $M, N=H_{1} \cap H_{2}$ (resp., $\left.H_{1} \cap H_{2} \subseteq N\right)$ implies that $N=H_{1}$ or $N=H_{2}$ (resp., $H_{1} \subseteq N$ or $\left.H_{2} \subseteq N\right)$.

The main purpose of this paper is to introduce the concept of 2-irreducible and strongly 2-irreducible submodules of an R-module M as a generalization of irreducible and strongly irreducible submodules of M and obtain some related results.

A submodule N of an R-module M is said to be a 2-irreducible submodule if whenever $N=H_{1} \cap H_{2} \cap H_{3}$ for submodules H_{1}, H_{2} and H_{3} of M, then either $N=H_{1} \cap H_{2}$ or $N=H_{2} \cap H_{3}$ or $N=H_{1} \cap H_{3}$ (Definition 2.1).

A proper submodule N of an R-module M is said to be a strongly 2 irreducible submodule if whenever $H_{1} \cap H_{2} \cap H_{3} \subseteq N$ for submodules H_{1}, H_{2} and H_{3} of M, then either $H_{1} \cap H_{2} \subseteq N$ or $H_{2} \cap H_{3} \subseteq N$ or $H_{1} \cap H_{3} \subseteq N$ (Definition 2.6).

In Section 2 of this paper, for an R-module M, among other results, we prove that if M is a Noetherian R-module and N is a 2 -irreducible submodule of M, then either N is irreducible or N is an intersection of exactly two irreducible submodules of M (Theorem 2.22). In Theorem 2.9, we provide a characterization for strongly 2 -irreducible submodules of M. Also, it is shown that if M is a strong comultiplication R-module, then every non-zero proper submodule of R is a strongly sum 2 -irreducible R-module if and only if every non-zero proper submodule of M is a strongly 2 -irreducible submodule of M (Theorem 2.11). Further, it is proved that if N is a submodule of a finitely generated multiplication R-module M, then N is a strongly 2-irreducible submodule of M if and only if $\left(N:_{R} M\right)$ is a strongly 2-irreducible ideal of R (Theorem 2.12). In Theorem 2.19 and 2.21, we provide some useful characterizations for strongly 2 -irreducible submodules of some special classes of modules. Example 2.14 shows that the concepts of strongly irreducible submodules and strongly 2 -irreducible submodules are different in general. Finally, let $R=R_{1} \times R_{2} \times \cdots \times R_{n}(2 \leq n<\infty)$ be a decomposable ring and $M=M_{1} \times M_{2} \cdots \times M_{n}$ be an R-module, where for every $1 \leq i \leq n, M_{i}$ is an R_{i}-module, respectively, it is proved that a proper submodule N of M is a strongly 2 -irreducible submodule of M if and only if either $N=\times_{i=1}^{n} N_{i}$ such that for some $k \in\{1,2, \ldots, n\}, N_{k}$ is a strongly 2 -irreducible submodule of M_{k}, and $N_{i}=M_{i}$ for every $i \in\{1,2, \ldots, n\} \backslash\{k\}$ or $N=\times_{i=1}^{n} N_{i}$ such that for some $k, m \in\{1,2, \ldots, n\}, N_{k}$ is a strongly irreducible submodule of M_{k}, N_{m} is a strongly irreducible submodule of M_{m}, and $N_{i}=M_{i}$ for every $i \in\{1,2, \ldots, n\} \backslash\{k, m\}$ (Theorem 2.28).

2. Main Results

Definition 2.1. We say that a submodule N of an R-module M is a 2irreducible submodule if whenever $N=H_{1} \cap H_{2} \cap H_{3}$ for submodules H_{1}, H_{2} and H_{3} of M, then either $N=H_{1} \cap H_{2}$ or $N=H_{2} \cap H_{3}$ or $N=H_{1} \cap H_{3}$.

Example 2.2. Let $R=K[X, Y]$ be a polynomial ring in variables X and Y over a field K. Let I be the ideal $\left\langle X^{2}, X Y\right\rangle$. Then $\left\langle X^{2}, X Y\right\rangle=\langle X\rangle \cap\left\langle X^{2}, Y\right\rangle$ implies that I is not an irreducible ideal of R. But since $\langle X\rangle \cap\left\langle X^{2}, Y\right\rangle$ is a primary decomplosition for I, one can see that I is a 2 -irreducible ideal of R by using [17, 9.31].

Example 2.3. Let $R=K[X, Y]$ be a polynomial ring in variables X and Y over a field K and let $I=\langle X\rangle \cap\langle Y\rangle$. Then I is not an irreducible ideal of R. But since $\langle X\rangle$ and $\langle Y\rangle$ are prime and so strongly irreducible ideals of R, we have I is a 2-irreducible ideal of R by [21, Proposition 3].

Theorem 2.4. Let M be a Noetherian R-module. If N is a 2-irreducible submodule of M, then either N is irreducible or N is an intersection of exactly two irreducible submodules of M.

Proof. Let N be a 2-irreducible submodule of M. By [17, Exercise 9.31], N can be written as a finite irredundant irreducible decomposition $N=N_{1} \cap$ $N_{2} \cap \ldots \cap N_{k}$. We show that either $k=1$ or $k=2$. If $k>3$, then since N is 2-irreducible, $N=N_{i} \cap N_{j}$ for some $1 \leq i, j \leq k$, say $i=1$ and $j=2$. Therefore $N_{1} \cap N_{2} \subseteq N_{3}$, which is a contradiction.

Corollary 2.5. Let M be a Noetherian multiplication R-module. If N is a 2-irreducible submodule of M, then N a 2-absorbing primary submodule of M.

Proof. Let N be a 2-irreducible submodule of M. By the fact that every irreducible submodule of a Noetherian R-module is primary and regarding Theorem 2.22, we have either N is a primary submodule or is a sum of two primary submodules. It is clear that every primary submodule is 2 -absorbing primary, also the sum of two primary submodules is a 2 -absorbing primary submodule, by [15, Theorem 2.20].

Definition 2.6. We say that a proper submodule N of an R-module M is a strongly 2-irreducible submodule if whenever $H_{1} \cap H_{2} \cap H_{3} \subseteq N$ for submodules H_{1}, H_{2} and H_{3} of M, then either $H_{1} \cap H_{2} \subseteq N$ or $H_{2} \cap H_{3} \subseteq N$ or $H_{1} \cap H_{3} \subseteq N$.

Example 2.7. [21, Corollary 2] Consider the \mathbb{Z}-module \mathbb{Z}. Then $n \mathbb{Z}$ is a strongly 2 -irreducible submodule of \mathbb{Z} if $n=0, p^{t}$ or $p^{r} q^{s}$, where p, q are prime integers and t, r, s are natural numbers.

Proposition 2.8. The strongly 2-irreducible submodules of a distributive R module are precisely the 2-irreducible submodules.

Proof. This is straightforward.
Theorem 2.9. Let N be a proper submodule of an R-module M. Then the following conditions are equivalent:
(a) N is a strongly 2-irreducible submodule;
(b) For all elements x, y, z of M, we have $(R x+R y) \cap(R x+R z) \cap(R y+$ $R z) \subseteq N$ implies that either $(R x+R y) \cap(R x+R z) \subseteq N$ or $(R x+$ $R y) \cap(R y+R z) \subseteq N$ or $(R x+R z) \cap(R y+R z) \subseteq N$.

Proof. $(a) \Rightarrow(b)$ This ia clear.
(b) \Rightarrow (a) Let $H_{1} \cap H_{2} \cap H_{3} \subseteq N$ for submodules H_{1}, H_{2} and H_{3} of M. If $H_{1} \cap H_{2} \nsubseteq N, H_{1} \cap H_{3} \nsubseteq N$, and $H_{2} \cap H_{3} \nsubseteq N$, then there exist elements x, y, z of M such that $x \in H_{2} \cap H_{3}, y \in H_{1} \cap H_{3}$, and $z \in H_{1} \cap H_{2}$ but $x \notin N$, $y \notin N$, and $z \notin N$. Therefore,

$$
(R y+R z) \cap(R x+R z) \cap(R x+R y) \subseteq H_{1} \cap H_{2} \cap H_{3} \subseteq N .
$$

Hence by the part (a), either $(R y+R z) \cap(R x+R z) \subseteq N$ or $(R y+R z) \cap(R x+$ $R y) \subseteq N$ or $(R x+R z) \cap(R x+R y) \subseteq N$. Thus either $z \in N$ or $y \in N$ or $x \in N$. This contradiction completes the proof.

Recall that a waist submodule of an R-module M is a submodule that is comparable to any other submodules of M.

Proposition 2.10. Let N be a proper submodule of an R-module M. Then we have the following.
(a) If N is a strongly 2-irreducible submodule of M, then it is also a 2irreducible submodule of M.
(b) If N is a strongly 2-irreducible submodule of M, then N is a strongly 2-irreducible submodule of T and N / K is a strongly 2-irreducible submodule of M / K for any $K \subseteq N \subseteq T$.
(c) If for all elements x, y, z of M we have $R x \cap R y \cap R z \subseteq N$ implies that either $R x \cap R y \subseteq N$ or $R x \cap R z \subseteq N$ or $R y \cap R z \subseteq N$, then N is a strongly 2 -irreducible submodule of M.
(d) If N is a waist submodule of M, then N is strongly 2-irreducible submodule of M if and only if N is 2 -irreducible module.
(e) If N satisfies $(N+T) \cap(N+K)=N+(T \cap K)$, whenever $T \cap K \subseteq N$, then N is strongly 2-irreducible submodule of M if and only if N is a 2-irreducible module.

Proof. (a) Let N be a strongly 2-irreducible submodule of M and let $N=$ $H_{1} \cap H_{2} \cap H_{3}$ for submodules H_{1}, H_{2} and H_{3} of M. Then by assumption, either $H_{1} \cap H_{2} \subseteq N$ or $H_{1} \cap H_{3} \subseteq N$ or $H_{2} \cap H_{3} \subseteq N$. Now the result follows from the fact that the reverse of inclusions are clear.

The parts (b), (d), and (e) are straightforward.
(c) Let $H_{1} \cap H_{2} \cap H_{3} \subseteq N$ for submodules H_{1}, H_{2} and H_{3} of M. If $H_{1} \cap H_{2} \nsubseteq$ $N, H_{1} \cap H_{3} \nsubseteq N$, and $H_{2} \cap H_{3} \nsubseteq N$, then there exist elements x, y, z of M such that $x \in H_{2} \cap H_{3}, y \in H_{1} \cap H_{3}$, and $z \in H_{1} \cap H_{2}$ but $x \notin N, y \notin N$, and $z \notin N$. Now the result follows by assumption.

An R-module M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N=\left(0:_{M} I\right)$, equivalently, for each submodule N of M, we have $N=\left(0:_{M} A n n_{R}(N)\right)$ [2].

An R-module M satisfies the double annihilator conditions (DAC for short) if for each ideal I of R we have $I=A n n_{R}\left(0:_{M} I\right)$ [9].

An R-module M is said to be a strong comultiplication module if M is a comultiplication R-module and satisfies the DAC conditions [4].

A submodule N of an R-module M is said to be a strongly sum 2-irreducible submodule if whenever $N \subseteq H_{1}+H_{2}+H_{3}$ for submodules H_{1}, H_{2} and H_{3} of M, then either $N \subseteq H_{1}+H_{2}$ or $N \subseteq H_{2}+H_{3}$ or $N \subseteq H_{1}+H_{3}$. Also, M is said to be a strongly sum 2-irreducible module if and only if M is a strongly sum 2-irreducible submodule of itself [10].

Theorem 2.11. Let M be a strong comultiplication R-module. Then every non-zero proper submodule of R is a strongly sum 2-irreducible R-module if and only if every non-zero proper submodule of M is a strongly 2-irreducible submodule of M.

Proof. " \Rightarrow " Let N be a non-zero proper submodule of M and let $H_{1} \cap H_{2} \cap$ $H_{3} \subseteq N$ for submodules H_{1}, H_{2} and H_{3} of M. Then by using [11, 2.5],

$$
A n n_{R}(N) \subseteq A n n_{R}\left(H_{1}\right)+A n n_{R}\left(H_{2}\right)+A n n_{R}\left(H_{3}\right)
$$

This implies that either $\operatorname{Ann}_{R}(N) \subseteq \operatorname{Ann}_{R}\left(H_{1}\right)+A n n_{R}\left(H_{2}\right)$ or $A n n_{R}(N) \subseteq$ $A n n_{R}\left(H_{1}\right)+A n n_{R}\left(H_{3}\right)$ or $A n n_{R}(N) \subseteq A n n_{R}\left(H_{2}\right)+A n n_{R}\left(H_{3}\right)$ since by assumption, $A n n_{R}(N)$ is a strongly sum 2-irreducible R-module. Therefore, either $H_{1} \cap H_{2} \subseteq N$ or $H_{1} \cap H_{3} \subseteq N$ or $H_{2} \cap H_{3} \subseteq N$ since M is a comultiplication R-module.
$" \Leftarrow "$ Let I be a non-zero proper submodule of R and let $I \subseteq I_{1}+I_{2}+I_{3}$.
Then

$$
\left(0:_{M} I_{1}\right) \cap\left(0:_{M} I_{2}\right) \cap\left(0:_{M} I_{3}\right) \subseteq\left(0:_{M} I\right)
$$

Thus by assumption, either $\left(0:_{M} I_{1}\right) \cap\left(0:_{M} I_{2}\right) \subseteq\left(0:_{M} I\right)$ or $\left(0:_{M} I_{1}\right) \cap\left(0:_{M}\right.$ $\left.I_{3}\right) \subseteq\left(0:_{M} I\right)$ or $\left(0:_{M} I_{2}\right) \cap\left(0:_{M} I_{3}\right) \subseteq\left(0:_{M} I\right)$. This implies that either $\left(0:_{M} I_{1}+I_{2}\right) \subseteq\left(0:_{M} I\right)$ or $\left(0:_{M} I_{1}+I_{3}\right) \subseteq\left(0:_{M} I\right)$ or $\left(0:_{M} I_{2}+I_{3}\right) \subseteq\left(0:_{M}\right.$ $I)$. Thus either $I \subseteq I_{1}+I_{2}$ or $I \subseteq I_{1}+I_{3}$ or $I \subseteq I_{2}+I_{3}$ since M is a strong comultiplication R-module.

An R-module M is said to be a multiplication module if for every submodule N of M there exists an ideal I of R such that $N=I M[6]$.

Theorem 2.12. Let N be a submodule of a finitely generated multiplication R-module M. Then N is a strongly 2-irreducible submodule of M if and only if $\left(N:_{R} M\right)$ is a strongly 2-irreducible ideal of R.

Proof. " \Rightarrow "Let N be a strongly 2-irreducible submodule of M and let $J_{1} \cap$ $J_{2} \cap J_{3} \subseteq\left(N:_{R} M\right)$ for some ideals J_{1}, J_{2}, and J_{3} of R. Then

$$
J_{1} M \cap J_{2} M \cap J_{3} M \subseteq\left(N:_{R} M\right) M=N
$$

by [8, Corollary 1.7]. Thus by assumption, either $J_{1} M \cap J_{2} M \subseteq N$ or $J_{1} M \cap$ $J_{3} M \subseteq N$ or $J_{2} M \cap J_{3} M \subseteq N$. Hence, either $\left(J_{1} \cap J_{2}\right) M \subseteq\left(N:_{R} M\right) M$ or $\left(J_{1} \cap J_{3}\right) M \subseteq\left(N:_{R} M\right) M$ or $\left(J_{2} \cap J_{3}\right) M \subseteq\left(N:_{R} M\right) M$. Therefore, either $J_{1} \cap J_{2} \subseteq\left(N:_{R} M\right)$ or $J_{1} \cap J_{3} \subseteq\left(N:_{R} M\right)$ or $J_{2} \cap J_{3} \subseteq\left(N:_{R} M\right)$ by [18, Corollary of Theorem 9].
$" \Leftarrow "$ Let $\left(N:_{R} M\right)$ is a strongly 2-irreducible ideal of R and let $H_{1} \cap H_{2} \cap$ $H_{3} \subseteq N$ for some submodules H_{1}, H_{2} and H_{3} of M. Then we have
$\left(H_{1} \cap H_{2} \cap H_{3}:_{R} M\right) M=\left(\left(H_{1}:_{R} M\right) \cap\left(H_{2}:_{R} M\right) \cap\left(H_{3}:_{R} M\right)\right) M \subseteq\left(N:_{R} M\right) M$.
Thus $\left(H_{1}:_{R} M\right) \cap\left(H_{2}:_{R} M\right) \cap\left(H_{3}:_{R} M\right) \subseteq\left(N:_{R} M\right)$ by [18, Corollary of Theorem 9]. Hence, either $\left(H_{1}:_{R} M\right) \cap\left(H_{2}:_{R} M\right) \subseteq\left(N:_{R} M\right)$ or $\left(H_{1}:_{R}\right.$ $M) \cap\left(H_{3}:_{R} M\right) \subseteq\left(N:_{R} M\right)$ or $\left(H_{2}:_{R} M\right) \cap\left(H_{3}:_{R} M\right) \subseteq\left(N:_{R} M\right)$ since $\left(N:_{R} M\right)$ is a strongly 2-irreducible ideal of R. Therefore, either $H_{1} \cap H_{2} \subseteq N$ or $H_{1} \cap H_{3} \subseteq N$ or $H_{2} \cap H_{3} \subseteq N$ by [8, Corollary 1.7].

Example 2.13. Consider the \mathbb{Z}-module $\mathbb{Z}_{p^{t} q^{n} r^{m}}$, where p, q, r are prime integers and t, n, m are natural numbers.
(a) By using Theorem 2.12 and Example 2.7, one can see that $\overline{p^{t}} \mathbb{Z}_{p^{t} q^{n} r^{m}}$ and $q^{n^{-}} r^{m} \mathbb{Z}_{p^{t} q^{n} r^{m}}$ are strongly 2 -irreducible submodules of $\mathbb{Z}_{p^{t} q^{n} r^{m} \text {. }}$.
(b) $p \bar{q} r \mathbb{Z}_{p^{3} q r}=\overline{p q} Z_{p^{3} q r} \cap \overline{p r} \mathbb{Z}_{p^{3} q r} \cap \overline{q r} \mathbb{Z}_{p^{3} q r}$ implies that $p \bar{q} r \mathbb{Z}_{p^{3} q r}$ is not a 2-irreducible submodule of $\mathbb{Z}_{p^{3} q r}$.

The following example shows that the concepts of strongly irreducible submodules and strongly 2 -irreducible submodules are different in general.

Example 2.14. Consider the \mathbb{Z}-module \mathbb{Z}_{6}. Then $0=\overline{3} \mathbb{Z}_{6} \cap \overline{2} \mathbb{Z}_{6}$ implies that the 0 submodule of \mathbb{Z}_{6} is not strongly irreducible. But $\left(0: \mathbb{Z} \mathbb{Z}_{6}\right)=6 \mathbb{Z}$ is a strongly 2 -irreducible ideal of \mathbb{Z} by Example 2.7 . Since the \mathbb{Z}-module \mathbb{Z}_{6} is a finitely generated multiplication \mathbb{Z}-module, 0 is a strongly 2 -irreducible submodule of \mathbb{Z}_{6} by Theorem 2.12.

Lemma 2.15. Let M be an R-module. If N_{1} and N_{2} are strongly irreducible submodules of M, then $N_{1} \cap N_{2}$ is a strongly 2-irreducible submodule of M.

Proof. This is straightforward.
A proper submodule P of an R-module M is said to be prime if for any $r \in R$ and $m \in M$ with $r m \in P$, we have $m \in P$ or $r \in\left(P:_{R} M\right)$ [7].

Proposition 2.16. Let M be a multiplication R-module and let N_{1}, N_{2}, and N_{3} be prime submodules of M such that $N_{1}+N_{2}=N_{1}+N_{3}=N_{2}+N_{3}=M$. Then $N_{1} \cap N_{2} \cap N_{3}$ is not a strongly 2-irreducible submodule of M.

Proof. Assume on the contrary that $N_{1} \cap N_{2} \cap N_{3}$ is a strongly 2-irreducible submodule of M. Then $N_{1} \cap N_{2} \cap N_{3} \subseteq N_{1} \cap N_{2} \cap N_{3}$ implies that either $N_{1} \cap N_{2} \subseteq N_{1} \cap N_{2} \cap N_{3}$ or $N_{1} \cap N_{3} \subseteq N_{1} \cap N_{2} \cap N_{3}$ or $N_{2} \cap N_{3} \subseteq N_{1} \cap N_{2} \cap N_{3}$. We can assume without loss of generality that $N_{1} \cap N_{2} \subseteq N_{1} \cap N_{2} \cap N_{3}$. Then $N_{1} \cap N_{2} \subseteq N_{3}$. It follows that $\left(N_{1}:_{R} M\right) N_{2} \subseteq N_{3}$. As N_{3} is a prime submodule of M, we have $N_{2} \subseteq N_{3}$ or $\left(N_{2}:_{R} M\right) \subseteq\left(N_{3}:_{R} M\right)$. Thus $N_{2} \subseteq N_{3}$ or $N_{1} \subseteq N_{3}$ since M is a multiplication R-module. Therefore, $N_{3}=M$, which is a contradiction.

Corollary 2.17. Let M be a multiplication R-module such that every proper submodule of M is strongly 2-irreducible. Then M has at most two maximal submodules.

Proof. This follows from Proposition 2.16
Let N be a submodule of an R-module M. The intersection of all prime submodules of M containing N is said to be the (prime) radical of N and denote by $\operatorname{rad}_{M} N$ (or simply by $\operatorname{rad}(N)$). In case N does not contained in any prime submodule, the radical of N is defined to be M. Also, $N \neq M$ is said to be a radical submodule of M if $\operatorname{rad}(N)=N$ [14]

Lemma 2.18. Let I be an ideal of R and N be a submodule of an R-module M. Then $\operatorname{rad}(I N)=\operatorname{rad}(N) \cap \operatorname{rad}(I M)$.

Proof. By [13, Corollary of Theorem 6], we have $\operatorname{rad}(N \cap I M))=\operatorname{rad}(N) \cap$ $\operatorname{rad}(I M)$. Since $I N \subseteq I M \cap N, \operatorname{rad}(I N) \subseteq \operatorname{rad}(I M \cap N)$. Thus $\operatorname{rad}(I N) \subseteq$ $\operatorname{rad}(N) \cap \operatorname{rad}(I M)$. Now let P be a prime submodule of M such that $I N \subseteq P$. As P is prime, $N \subseteq P$ or $I \subseteq\left(P:_{R} M\right)$. Hence $N \cap I M \subseteq P$. This in tourn implies that $\operatorname{rad}(N) \cap \operatorname{rad}(I M) \subseteq \operatorname{rad}(I N)$, as desired.

A proper ideal I of R is said to be a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I[5]$.

A proper submodule N of an R-module M is said to be a 2-absorbing primary submodule of M if whenever $a, b \in R, m \in M$, and $a b m \in N$, then $\operatorname{am} \in \operatorname{rad}(N)$ or $b m \in \operatorname{rad}(N)$ or $a b \in\left(N:_{R} M\right)$ [15].

A proper submodule N of an R-module M is called a 2-absorbing submodule of M if whenever $a b m \in N$ for some $a, b \in R$ and $m \in M$, then $a m \in N$ or $b m \in N$ or $a b \in\left(N:_{R} M\right)$ [19] and [16].

Theorem 2.19. Let M be a finitely generated multiplication R-module and N be a radical submodule of M. Then the following conditions are equivalent:
(a) N is a strongly 2-irreducible submodule of M;
(b) N is a 2-absorbing submodule of M;
(c) N is a 2-absorbing primary submodule of M;
(d) N is either a prime submodule of M or is an intersection of exactly two prime submodules of M.

Proof. $(a) \Rightarrow(b)$ Let I, J be ideals of R and K be a submodule of M such that $I J K \subseteq N$. Then by using Lemma 2.18,

$$
K \cap I M \cap J M \subseteq \operatorname{rad}(K) \cap \operatorname{rad}(I M) \cap \operatorname{rad}(J M)=\operatorname{rad}(I J K) \subseteq \operatorname{rad}(N)=N
$$

Hence by part (a), either $K \cap I M \subseteq N$ or $K \cap J M \subseteq N$ or $I M \cap J M \subseteq N$. Thus either $I K \subseteq N$ or $J K \subseteq N$ or $I J M \subseteq N$ as needed.
$(b) \Rightarrow(c)$ This is clear.
$(c) \Rightarrow(b)$ This is clear by using [15, Theorem 2.6].
$(b) \Rightarrow(d)$ Since N is a 2-absorbing submodule of $M,\left(N:_{R} M\right)$ is a 2absorbing ideal of R by [20, Proposition 1]. Hence $\sqrt{\left(N:_{R} M\right)}=P$ is a prime ideal of R or $\sqrt{\left(N:_{R} M\right)}=P \cap Q$, where P and Q are distinct prime ideals of R that are minimal over $\left(N:_{R} M\right)$ by [5, Theorem 2.4]. We have $\sqrt{\left(N:_{R} M\right)} M=\operatorname{rad}(N)$ by $\left[14\right.$, Theorem 4]. If $\sqrt{\left(N:_{R} M\right)}=P$, then $P M=$ $\operatorname{rad}(N)$. Since M is a multiplication R-module, $P M$ is a prime submodule of M by [8, Corollary 2.11]. Now let $\sqrt{A n n_{R}(N)}=P \cap Q$, where P and Q are distinct prime ideals of R. Then $(P \cap Q) M=\operatorname{rad}(N)$. By [8, Corollary 1.7], $(P \cap Q) M=P M \cap Q M$. Thus by [8, Corollary 2.11] $\operatorname{rad}(N)$ is an intersection of two prime submodules of M. Now, we prove the claim by assumption that N is a radical submodule of M.
$(d) \Rightarrow(a)$ This follows from Lemma 2.15.
The following example shows that parts (a) and (b) of Theorem 2.19 are not equivalent in general.

Example 2.20. Consider the submodule $G_{t}=\left\langle 1 / p^{t}+\mathbb{Z}\right\rangle$ of the \mathbb{Z}-module $\mathbb{Z}_{p^{\infty}}$. Then G_{t} is a strongly 2 -irreducible submodule of $\mathbb{Z}_{p^{\infty}}$. But G_{t} is not a 2-absorbing submodule of $\mathbb{Z}_{p^{\infty}}$. It should be note that the \mathbb{Z}-module $\mathbb{Z}_{p \infty}$ is not a finitely genrated multiplication \mathbb{Z}-module.

A submodule N of an R-module M is said to be pure if $I N=I M \cap N$ for every ideal I of R [1]. Also, an R-module M is said to be fully pure if every submodule of M is pure [3].

Theorem 2.21. Let M be a fully pure multiplication R-module and N be a submodule of M. Then the following conditions are equivalent:
(a) N is a strongly 2-irreducible submodule of M;
(b) N is a 2-absorbing submodule of M;
(c) N is a 2-irreducible submodule of M.

Proof. $(a) \Rightarrow(b)$ Let I, J be ideals of R and K be a submodule of M such that $I J K \subseteq N$. Then since M is fully pure,

$$
K \cap I M \cap J M=I J K \subseteq N
$$

Hence by part (a), either $K \cap I M \subseteq N$ or $K \cap J M \subseteq N$ or $I M \cap J M \subseteq N$. Thus either $I K \subseteq N$ or $J K \subseteq N$ or $I J M \subseteq N$.
$(b) \Rightarrow(a)$ Let $H_{1} \cap H_{2} \cap H_{3} \subseteq N$ for submodules H_{1}, H_{2} and H_{3} of M. Then

$$
\left(H_{1}:_{R} M\right) \cap\left(H_{2}:_{R} M\right) \cap\left(H_{3}:_{R} M\right)=\left(H_{1} \cap H_{2} \cap H_{3}:_{R} M\right) \subseteq\left(N:_{R} M\right)
$$

Thus either $\left(H_{1}:_{R} M\right)\left(H_{2}:_{R} M\right) \subseteq\left(N:_{R} M\right)$ or $\left(H_{1}:_{R} M\right)\left(H_{3}:_{R} M\right) \subseteq$ $\left(N:_{R} M\right)$ or $\left(H_{2}:_{R} M\right)\left(H_{3}:_{R} M\right) \subseteq\left(N:_{R} M\right)$ since $\left(N:_{R} M\right)$ is a 2 absorbing ideal of R by [20, Proposition 1]. We can assume without loss of generality that $\left(H_{1}:_{R} M\right)\left(H_{2}:_{R} M\right) \subseteq\left(N:_{R} M\right)$. Thus as M is fully pure, we have

$$
\left(H_{1}:_{R} M\right) M \cap\left(H_{2}:_{R} M\right) M \subseteq\left(N:_{R} M\right) M \subseteq N
$$

Therefore, $H_{1} \cap H_{2} \subseteq N$ since M is a multiplication R-module.
$(a) \Leftrightarrow(c)$ By [3, proof of Theorem 2.19], M is a distributive R-module. Now the result follows from Proposition 2.8.

Lemma 2.22. Let M be an R-module, S a multiplicatively closed subset of R, and N be a finitely generated submodule of M. If $S^{-1} N \subseteq S^{-1} K$ for a submodule K of M, then there exists $s \in S$ such that $s N \subseteq K$.

Proof. This is straightforward.
Proposition 2.23. Let M be an R-module, S be a multiplicatively closed subset of R and N be a finitely generated prime strongly 2-irreducible submodule of M such that $\left(N:_{R} M\right) \cap S=\emptyset$. Then $S^{-1} N$ is a strongly 2-irreducible submodule of $S^{-1} M$ if $S^{-1} N \neq S^{-1} M$.

Proof. Let $S^{-1} H_{1} \cap S^{-1} H_{2} \cap S^{-1} H_{3} \subseteq S^{-1} N$ for submodules $S^{-1} H_{1}, S^{-1} H_{2}$ and $S^{-1} H_{3}$ of $S^{-1} M$. Then $S^{-1}\left(H_{1} \cap H_{2} \cap H_{3}\right) \subseteq S^{-1} N$. By Lemma 2.22, there exists $s \in S$ such that $s\left(H_{1} \cap H_{2} \cap H_{3}\right) \subseteq N$. This implies that $H_{1} \cap H_{2} \cap H_{3} \subseteq N$ since N is prime and $\left(N:_{R} M\right) \cap S=\emptyset$. Now as N is a strongly 2-irreducible submodule of M, we have either $H_{1} \cap H_{2} \subseteq N$ or $H_{1} \cap H_{3} \subseteq N$ or $H_{2} \cap H_{3} \subseteq N$. Therefore, either $S^{-1} H_{1} \cap S^{-1} H_{2} \subseteq S^{-1} N$ or $S^{-1} H_{1} \cap S^{-1} H_{3} \subseteq S^{-1} N$ or $S^{-1} H_{2} \cap S^{-1} H_{3} \subseteq S^{-1} N$, as needed.

Proposition 2.24. Let M be an R-module and $\left\{K_{i}\right\}_{i \in I}$ be a chain of strongly 2-irreducible submodules of M. Then $\cap_{i \in I} K_{i}$ is a strongly 2-irreducible submodule of M.

Proof. Let $H_{1} \cap H_{2} \cap H_{3} \subseteq \cap_{i \in I} K_{i}$ for submodules H_{1}, H_{2} and H_{3} of M. Assume that $H_{1}+H_{2} \nsubseteq \cap_{i \in I} K_{i}, H_{1}+H_{3} \nsubseteq \cap_{i \in I} K_{i}$, and $H_{2}+H_{3} \nsubseteq \cap_{i \in I} K_{i}$.

Then there are $m, n, t \in I$, where $H_{1} \cap H_{2} \nsubseteq K_{m}, H_{1} \cap H_{3} \nsubseteq K_{n}$, and $H_{2} \cap H_{3} \nsubseteq$ K_{t}. Since $\left\{K_{i}\right\}_{i \in I}$ is a chain we can assume that $K_{m} \subseteq K_{n} \subseteq K_{t}$. But as $H_{1} \cap H_{2} \cap H_{3} \subseteq K_{m}$ and K_{m} is a strongly sum 2-irreducible submodule of M, we have either $H_{1} \cap H_{2} \subseteq K_{m}$ or $H_{1} \cap H_{3} \subseteq K_{m}$ or $H_{2} \cap H_{3} \subseteq K_{m}$. In any case, we get a contradiction.

Theorem 2.25. Let $f: M \rightarrow M^{\prime}$ be a epimorphism of R-modules. Then we have the following.
(a) If N is a strongly 2-irreducible submodule of M such that $\operatorname{ker}(f) \subseteq N$, then $f(N)$ is a strongly 2-irreducible submodule of M.
(b) If \dot{N} is a strongly 2-irreducible submodule of \dot{M}, then $f^{-1}(\mathcal{N})$ is a strongly 2-irreducible submodule of M.

Proof. (a) Let N be a strongly 2-irreducible submodule of M. If $f(N)=M^{\prime}$, then we have $N+\operatorname{Ker}(f)=f^{-1}(f(N))=f^{-1}\left(M^{\prime}\right)=f^{-1}(f(M))=M$. Now as $k e r(f) \subseteq N$, we get that $N=M$, which is a contradiction. Therefore, $f(N) \neq M^{\prime}$. Suppose that $\dot{H}_{1} \cap \dot{H}_{2} \cap H_{3} \subseteq f(N)$ for submodules \dot{H}_{1}, H_{2} and \dot{H}_{3} of \dot{M}. Then $f^{-1}\left(\dot{H}_{1}\right) \cap f^{-1}\left(\dot{H}_{2}\right) \cap f^{-1}\left(\dot{H}_{3}\right) \subseteq f^{-1}(f(N))=N$ since $k e r(f) \subseteq N$. Thus by assumption, either $f^{-1}\left(H_{1}^{\prime}\right) \cap f^{-1}\left(H_{2}\right) \subseteq N$ or $f^{-1}\left(H_{1}\right) \cap f^{-1}\left(H_{3}\right) \subseteq$ N or $f^{-1}\left(H_{2}^{\prime}\right) \cap f^{-1}\left(H_{3}^{\prime}\right) \subseteq N$. Now as f is epimorphism, we have either $\dot{H}_{1} \cap \dot{H}_{2} \subseteq f(N)$ or $\dot{H}_{1} \cap \hat{H}_{3} \subseteq f(N)$ or $\dot{H}_{2} \cap H_{3} \subseteq f(N)$, as needed.
(b) Let N^{\prime} be a strongly 2-irreducible submodule of M^{\prime}. Since $N^{\prime} \neq M^{\prime}$ and f is a epimorphism, we have $f^{-1}(\hat{N}) \neq M$. Now let $H_{1} \cap H_{2} \cap H_{3} \subseteq f^{-1}(N)$ for submodules H_{1}, H_{2} and H_{3} of M. Then $f\left(H_{1}\right) \cap f\left(H_{2}\right) \cap f\left(H_{3}\right) \subseteq f\left(f^{-1}(N)\right)=$ N. Thus by assumption, either $f\left(H_{1}\right) \cap f\left(H_{2}\right) \subseteq N$ or $f\left(H_{1}\right) \cap f\left(H_{3}\right) \subseteq N$ or $f\left(H_{2}\right) \cap f\left(H_{3}\right) \subseteq N$. Now we have either $H_{1} \cap H_{2} \subseteq f^{-1}(N)$ or $H_{1} \cap H_{3} \subseteq$ $f^{-1}(N)$ or $H_{2} \cap H_{3} \subseteq f^{-1}(N)$, as required.

Theorem 2.26. Let M be a finitely generated multiplication distributive R module and let N be a non-zero proper submodule of M. Then the following statements are equivalent:
(a) N is a strongly 2-irreducible submodule of M;
(b) $\left(N:_{R} M\right)$ is a strongly 2-irreducible ideal of R;
(c) $\left(N:_{R} M\right)$ is a 2-irreducible ideal of R.

Proof. $(a) \Rightarrow(b)$ This follows from Theorem 2.12.
$(b) \Rightarrow(c)$ This follows from [21, Proposition 1].
$(c) \Rightarrow(a)$ Let $H_{1} \cap H_{2} \cap H_{3} \subseteq N$ for submodules H_{1}, H_{2} and H_{3} of M. Then as M is a distributive R-module, we have

$$
N=N+\left(H_{1} \cap H_{2} \cap H_{3}\right)=\left(N+H_{1}\right) \cap\left(N \cap H_{2}\right) \cap\left(N \cap H_{3}\right)
$$

This implies that $\left(N:_{R} M\right)=\left(N+H_{1}:_{R} M\right) \cap\left(N+H_{2}:_{R} M\right) \cap\left(N+H_{3}:_{R} M\right)$. Thus by assumption, either $\left(N:_{R} M\right)=\left(N+H_{1}:_{R} M\right) \cap\left(N+H_{2}:_{R} M\right)$ or $\left(N:_{R} M\right)=\left(N+H_{1}:_{R} M\right) \cap\left(N+H_{3}:_{R} M\right)$ or $\left(N:_{R} M\right)=\left(N+H_{2}:_{R}\right.$
$M) \cap\left(N+H_{3}:_{R} M\right)$. Therefore, by [8, Corollary 1.7], either $N=N+\left(H_{1} \cap H_{2}\right)$ or $N=N+\left(H_{1} \cap H_{3}\right)$ or $N=N+\left(H_{2} \cap H_{3}\right)$, since M is a finitely generated multiplication R-module. Thus either, $H_{1} \cap H_{2} \subseteq N$ or $H_{1} \cap H_{3} \subseteq N$ or $H_{2} \cap H_{3} \subseteq N$ as needed .

Let R_{i} be a commutative ring with identity and M_{i} be an R_{i}-module, for $i=1,2$. Let $R=R_{1} \times R_{2}$. Then $M=M_{1} \times M_{2}$ is an R-module and each submodule of M is in the form of $N=N_{1} \times N_{2}$ for some submodules N_{1} of M_{1} and N_{2} of M_{2}.

Theorem 2.27. Let $R=R_{1} \times R_{2}$ be a decomposable ring and $M=M_{1} \times M_{2}$ be an R-module, where M_{1} is an R_{1}-module and M_{2} is an R_{2}-module. Suppose that $N=N_{1} \times N_{2}$ is a proper submodule of M. Then the following conditions are equivalent:
(a) N is a strongly 2-irreducible submodule of M;
(b) Either $N_{1}=M_{1}$ and N_{2} strongly 2-irreducible submodule of M_{2} or $N_{2}=M_{2}$ and N_{1} is a strongly 2-irreducible submodule of M_{1} or N_{1}, N_{2} are strongly irreducible submodules of M_{1}, M_{2}, respectively.

Proof. $(a) \Rightarrow(b)$. Let $N=N_{1} \times N_{2}$ be a strongly 2-irreducible submodule of M such that $N_{2}=M_{2}$. From our hypothesis, N is proper, so $N_{1} \neq M_{1}$. Set $M^{\prime}=M /\left(0 \times M_{2}\right)$. One can see that ${ }_{N}^{\prime}=N /\left(0 \times M_{2}\right)$ is a strongly 2 irreducible submodule of M. Also, observe that $M^{\prime} \cong M_{1}$ and $N^{\prime} \cong N_{1}$. Thus N_{1} is a strongly 2 -irreducible submodule of M_{1}. By a similar argument as in the previous case, N_{2} is a strongly 2 -irreducible submodule of M_{2}, where, $N_{1}=M_{1}$. Now suppose that $N_{1} \neq M_{1}$ and $N_{2} \neq M_{2}$. We show that N_{1} is a irreducible submodule of M_{1}. Suppose that $H_{1} \cap K_{1} \subseteq N_{1}$ for some submodules H_{1} and K_{1} of M_{1}. Then

$$
\left(H_{1} \times M_{2}\right) \cap\left(M_{1} \times 0\right) \cap\left(K_{1} \times M_{2}\right) \subseteq\left(H_{1} \cap K_{1}\right) \times 0 \subseteq N_{1} \times N_{2} .
$$

Thus by assumption, either $\left(H_{1} \times M_{2}\right) \cap\left(M_{1} \times 0\right) \subseteq N_{1} \times N_{2}$ or $\left(H_{1} \times M_{2}\right) \cap$ $\left(K_{1} \times M_{2}\right) \subseteq N_{1} \times N_{2}$ or $\left(M_{1} \times 0\right) \cap\left(K_{1} \times M_{2}\right) \subseteq N_{1} \times N_{2}$. Therefore, $H_{1} \subseteq N_{1}$ or $K_{1} \subseteq N_{1}$ since $N_{2} \neq M_{2}$. Thus N_{1} is a strongly irreducible submodule of M_{1}. Similarly, we can show that N_{2} is strongly irreducible submodule of M_{2}.
$(b) \Rightarrow(a)$. Suppose that $N=N_{1} \times M_{2}$, where N_{1} is a strongly 2-irreducible submodule of M_{1}. Then it is clear that N is a strongly 2 -irreducible submodule of M. Now, assume that $N=N_{1} \times N_{2}$, where N_{1} and N_{2} are strongly irreducible submodules of M_{1} and M_{2}, respectively. Hence $\left(N_{1} \times M_{2}\right) \cap\left(M_{1} \times N_{2}\right)=$ $N_{1} \times N_{2}=N$ is a strongly 2-irreducible submodule of M, by Lemma 2.15.

Theorem 2.28. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}(2 \leq n<\infty)$ be a decomposable ring and $M=M_{1} \times M_{2} \cdots \times M_{n}$ be an R-module, where for every $1 \leq i \leq n$, M_{i} is an R_{i}-module, respectively. Then for a proper submodule N of M the following conditions are equivalent:
(a) N is a strongly 2-irreducible submodule of M;
(b) Either $N=\times_{i=1}^{n} N_{i}$ such that for some $k \in\{1,2, \ldots, n\}, N_{k}$ is a strongly 2-irreducible submodule of M_{k}, and $N_{i}=M_{i}$ for every $i \in\{1,2, \ldots, n\} \backslash$ $\{k\}$ or $N=\times_{i=1}^{n} N_{i}$ such that for some $k, m \in\{1,2, \ldots, n\}, N_{k}$ is a strongly irreducible submodule of M_{k}, N_{m} is a strongly irreducible submodule of M_{m}, and $N_{i}=M_{i}$ for every $i \in\{1,2, \ldots, n\} \backslash\{k, m\}$.

Proof. We use induction on n. For $n=2$ the result holds by Theorem 2.27. Now let $3 \leq n<\infty$ and suppose that the result is valid when $K=M_{1} \times \cdots \times$ M_{n-1}. We show that the result holds when $M=K \times M_{n}$. By Theorem $2.27, N$ is a strongly 2 -irreducible submodule of M if and only if either $N=L \times M_{n}$ for some strongly 2-irreducible submodule L of K or $N=K \times L_{n}$ for some strongly 2-irreducible submodule L_{n} of M_{n} or $N=L \times L_{n}$ for some strongly irreducible submodule L of K and some strongly irreducible submodule L_{n} of M_{n}. Note that a proper submodule L of K is a strongly irreducible submodule of K if and only if $L=\times_{i=1}^{n-1} N_{i}$ such that for some $k \in\{1,2, \ldots, n-1\}, N_{k}$ is a strongly irreducible submodule of M_{k}, and $N_{i}=M_{i}$ for every $i \in\{1,2, \ldots, n-1\} \backslash\{k\}$. Consequently the claim is now verified.

Acknowledgments

The authors would like to thank the referee for his/her helpful comments.

References

1. W. Anderson, K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
2. H. Ansari-Toroghy, F. Farshadifar, The Dual Notion of Multiplication Modules, Taiwanese J. Math., 11(4), (2007), 1189-1201.
3. H. Ansari-Toroghy, F. Farshadifar, Fully Idempotent and Coidempotent Modules, Bull. Iranian Math. Soc., 38(4), (2012), 987-1005.
4. H. Ansari-Toroghy, F. Farshadifar, Strong Comultiplication Modules, CMU. J. Nat. Sci., 8(1), (2009), 105-113.
5. A. Badawi, On 2-absorbing Ideals of Commutative Rings, Bull. Austral. Math. Soc., 75, (2007), 417-429.
6. A. Barnard, Multiplication Modules, J. Algebra, 71, (1981), 174-178.
7. J. Dauns, Prime Modules, J. Reine Angew. Math., 298, (1978), 156-181.
8. Z. A. El-Bast, P. F. Smith, Multiplication Modules, Comm. Algebra, 16, (1988), 755-779.
9. C. Faith, Rings Whose Modules Have Maximal Submodules, Publ. Mat., 39, (1995), 201-214.
10. F. Farshadifar, H. Ansari-Toroghy, Strongly Sum 2-irreducible Submodules of a Module, São Paulo J. Math. Sci., (2021). https://doi.org/10.1007/s40863-021-00211-w.
11. I. M. A. Hadi, G. A. Humod, Strongly (Completely) Hollow Sub-modules II, Ibn ALHaitham Journal For Pure and Applied Science, 26(1), (2013), 292-302.
12. W. J. Heinzer, L. J. Ratliff, D. E. Rush, Strongly Irreducible Ideals of a Commutative Ring, J. Pure Appl. Algebra, 166(3), (2002), 267-275.
13. C. P. Lu, M-Radicals of Submodules in Modules, Math. Japonica, 34(2), (1989), 211-219.
14. R. L. McCasland, M. E. Moore, On Radical of Submodules of Finitely Generated Modules, Canad. Math. Bull., 29(1), (1986), 37-39.
15. H. Mostafanasab, E. Yetkin, U. Tekir, A. Yousefian Darani, On 2-absorbing Primary Submodules of Modules over Commutative Rings, An. St. Univ. Ovidius Constanta, 24(1), (2016), 335-351.
16. Sh. Payrovi, S. Babaei, On 2-absorbing Submodules, Algebra Collq., 19, (2012), 913-920.
17. R. Y. Sharp, Step in Commutative Algebra, Cambridge University Press, 1990.
18. P. F. Smith, Some Remarks on Multiplication Modules, Arch. Math., 50, (1988), 223235.
19. A. Yousefian Darani, F. Soheilnia, 2-absorbing and Weakly 2-absorbing Submoduels, Thai J. Math., 9 (3), (2011), 577-584.
20. A. Yousefian Darani, F. Soheilnia, On n-absorning Submodules, Math. Commun., 17, (2012), 547-557.
21. A. Yousefian Darani, H. Mostafanasab, 2-irreducible and Strongly 2-irreducible Ideals of Commutative Rings, Miskolc Mathematical Notes, 17(1), (2016), 441-455.

[^0]: * Corresponding Author

 Received 14 June 2019; Accepted 15 January 2022
 (C)2023 Academic Center for Education, Culture and Research TMU

