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Abstract. Let R be a ring. The class of SA-injective right R-modules

(SAIR) is introduced as a class of soc-injective right R-modules. Let N

be a right R-module. A right R-module M is said to be SA-N -injective

if every R-homomorphism from a semi-artinian submodule of N into M

extends to N . A module M is called SA-injective, if M is SA-R-injective.

We characterize rings over which every right module is SA-injective. Con-

ditions under which the class SAIR is closed under quotient (resp. direct

sums, pure homomorphic images) are given. The definability of the class

SAIR is studied. Finally, relations between SA-injectivity and certain

generalizations of injectivity are given.

Keywords: Semi-artinian submodule, Definable class, Injective module, Noe-

therian module, Flat module.
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1. Introduction

Throughout R is an associative ring with identity and all modules are

unitary R-modules. If not otherwise specified, by a module (resp. homomor-

phism) we will mean a right R-module (resp. right R-homomorphism). We use

R-Mod (resp. Mod-R) to denote the class of left (resp. right) R-modules. We

will use M∗ to denote the character module HomZ(M,Q/Z) of a right module
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52 A. R. Mehdi

M . Let G (resp. F) be a class of right (resp. left) R-modules. A pair (F ,G)

is called almost dual pair if G is closed under summands and direct products,

and for any left R-module M, M ∈ F if and only if M∗ ∈ G [12, p. 66].

An exact sequence 0 → A
α→ B

β→ C → 0 of right R-modules is said to be

pure if the sequence 0→ HomR(N,A)→ HomR(N,B)→ HomR(N,C)→ 0 is

exact, for every finitely presented right R-module N and we called that α(A)

is a pure submodule of B [21]. A right R-module M is called FP -injective if

every monomorphism α : M → N is pure. A right R-module M is called pure

injective if M is injective with respect to all pure short exact sequences [21].

If a subclass G of Mod-R is closed under pure submodules, direct limits and

direct products, then it is called a definable class[16]. We denote by Soc(M)

to the socle of a module M . A right R-module M is called semi-artinian if for

any proper submodule N of M we have Soc(M/N) 6= 0 [9, p. 238]. We will

denote to the sum of all semi-artinian submodules of a right R-module M by

Sa(M). If N is a submodule of a right R-module M , the notation N ⊆sa M
means that N is a semi-artinian submodule of M .

We refer the reader to [2], [9], [16], [18] and [21], for general background mate-

rials.

Injective modules have been studied extensively, and several generalizations

for these modules are given, for example, soc-injective modules [1], L-injective

Modules [13], and n-FP -injective modules [5]. If Ext1(R/K,M) = 0, for

any semisimple right ideal K of R, then a right R-module M is called soc-

injective [1], where Ext1(A,B) is defined as the first right derived functor of

HomR(A,B), for any two right R-modules A,B (see [4, Ch. VI] for more

details).

In section 2 of this paper, we introduce the class of SA-injective modules.

This class of modules lies between injective modules and soc-injective modules.

We first give examples to show that the notion of SA-injectivity is distinct from

that of injectivity and soc-injectivity. We characterize rings over which every

module is SA-injective. We prove the equivalence of the following statements:

(1) Every right R-module is SA-injective; (2) Every semi-artinian module is

SA-injective; (3) Every semi-artinian right ideal of R is SA-injective; (4) Every

semi-artinian right ideal of R is a direct summand of R. Conditions under which

the class of SA-injective right R-modules (SAIR) is closed under quotient are

given. For instance, we prove that the equivalence of the following: (1) The

class SAIR is closed under quotient; (2) Sums of any two SA-injective submod-

ules of any right R-module is SA-injective; (3) All semi-artinian right ideals of

R are projective. Finally, we give conditions such that the class SAIR is closed

under direct sums. For instance, we prove that the following are equivalent.

(1) Sa(RR) is noetherian; (2) Any direct sum of SA-injective right R-modules

is SA-injective; (3) The class SAIR is closed under pure submodules; (4) All

FP -injective modules are SA-injective.
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On A Class of Soc-Injective Modules 53

In section 3, we study the definability of the class SAIR. It is shown that the

following assertions are equivalent: (1) SAIR is definable; (2) The class SAIR
is closed under pure submodules and pure homomorphic images; (3) Every

semi-artinian right ideal in R is finitely presented; (4) A module M ∈ SAIR iff

M∗ ∈ (SAIR)	; (5) A module M ∈ SAIR iff M∗∗ ∈ SAIR. Finally, we prove

that if the class SAIR is a definable, then the class of flat left R-modules and

the class (SAIR)	 are coincide iff all modules in SAIR are FP -injective iff all

pure-injective modules in SAIR are injective.

In section 4, we give relations between SA-injectivity and certain generaliza-

tions of injectivity (in particular, quasi-injectivity and F-injectivity). Firstly,

we prove that a ring R is a right semi-artinian ring iff every SA-injective right

R-module is quasi-injective iff every cyclic SA-injective right R-module is quasi-

injective. Then, we prove that a commutative ring R is semisimple if and only

if R is a semi-artinian ring and every quasi-injective R-module is SA-injective.

Also, we prove that Sa(RR) is a noetherian right R-module if and only if ev-

ery F-injective right R-module is SA-injective. Finally, we prove that a ring

R is a (von Neumann) regular and every P-injective right R-module is SA-

injective if and only if every SA-injective right R-module is P-injective and

every semi-artinian right ideal of R is a direct summand of RR.

2. SA-Injective Modules

Definition 2.1. Let N be a module. A module M is called SA-N -injective,

if for any semi-artinian submodule K of N , any homomorphism f : K → M

extends to N . M is called SA-injective if M is SA-R-injective. A ring R is

called SA-injective if the module RR is SA-injective.

We will use SAIR to denote the class of SA-injective right R-modules.

Examples 2.2. (1) All injective modules are SA-injective. Since 0 is the

only semi-artinian right ideal in Z, we have the right Z-module Z is a SA-

injective but it is not injective. Hence SA-injectivity is a proper generalization

of injectivity.

(2) Since every semisimple module is semi-artinian, we have every SA-injective

module is soc-injective. The converse is not true in general, for example: let

R = Z2[x1, x2, ...] where x3i = 0 for all i, x2i = x2j 6= 0 for all i and j and

xixj = 0 for all i 6= j. By [1, Example 5.7], R is a semiprimary commutative

and soc-injective ring but it is not self injective. By [18, Example 1, p. 184],

R is a right semi-artinian ring, so that Proposition 2.5 in [18, p. 183] implies

that I ⊆sa RR for any right ideal I in R and hence R is not SA-injective ring.

(3) Clearly, if Soc(NR) = 0, then 0 is the only semi-artinian submodule of

N and hence every module is SA-N -injective. Particularly, all Z-modules are

SA-injective.
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54 A. R. Mehdi

(4) All modules with zero socles are SA-injective, this follows from the fact

that Soc(M) = 0 if and only if Sa(M) = 0, for any module M .

Proposition 2.3. Let N be a module. Then following statements hold:

(1) The class of SA-N -injective modules is closed under isomorphic copies,

direct products, direct summands and finite direct sums.

(2) For any submodule K of N , if M is SA-N -injective module, then M is

SA-K-injective.

(3) If M is SA-N -injective module, then M is SA-K-injective, for any module

K isomorphic to N .

Proof. Clear. �

Corollary 2.4. The class of SA-injective right R-modules (SAIR) is closed

under isomorphic copies, direct products, direct summands and finite direct

sums.

Proposition 2.5. Let M be a module and {Ni : i ∈ I} be a family of modules.

If
⊕
i∈I
Ni is a multiplication module, then M is SA-

⊕
i∈I
Ni-injective iff M is SA-

Ni -injective, for all i ∈ I.

Proof. (⇒) By Proposition 2.3((2),(3)).

(⇐) Let K ⊆s.a
⊕
i∈I
Ni. Since

⊕
i∈I
Ni is a multiplication module (by hypoth-

esis), we have from [20, Theorem 2.2, p. 3844] that K =
⊕
i∈I
Ki with Ki is a

submodule of Ni, for all i ∈ I. By [9, p. 238], Ki ⊆s.a Ni. For i ∈ I, consider

the following diagram:

Ki

iKi
��

� � i2 //// Ni

iNi
��

K =
⊕
i∈I
Ki

f

��

� � i1 ////
⊕
i∈I

Ni

M

where iKi , iNi are injection maps and i1, i2 are inclusion maps. The

hypothesis implies that there exists homomorphism hi : Ni −→ M such that

hi ◦ i2 = f ◦ iKi
. By [9, Theorem 4.1.6(2)], there exists exactly one homomor-

phism h :
⊕
i∈I
Ni −→ M satisfying hi = h ◦ iNi . Thus f ◦ iKi = hi ◦ i2 =

h ◦ iNi
◦ i2 = h ◦ i1 ◦ iKi

for all i ∈ I. Let (ai)i∈I ∈
⊕
i∈I
Ki, thus ai ∈Ki,

for all i ∈ I and f((ai)i∈I) = f(
∑
i∈I iKi

((ai)i∈I)) = (h ◦ i1 )((ai)i∈I). Thus

f = h ◦ i1 and the proof is complete. �
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On A Class of Soc-Injective Modules 55

Recall that a ring R is called a right invariant if each of its right ideals is an

ideal of R [20, p. 3839].

Corollary 2.6. (1) Let M be a module over a right invariant ring R and

1 = λ1 + λ2 + ...+ λm in R such that λj are orthogonal idempotent. Then M

is SA-injective iff M is SA-λjR-injective for every j = 1 , 2 ,...,m.

(2) If M is SA-aR-injective module and aR ∼= bR, where a and b are idempo-

tents of R, then M is SA-bR-injective.

Proof. (1) By [2, Corollary 7.3], R =
m⊕

j=1

λjR. Since R is a right invariant ring,

we get from [20, Proposition 3.1, p. 3855] that R is a multiplication module and

hence Proposition 2.5 implies that M is SA-injective iff M is SA-λjR-injective

for all 1≤ j ≤ m.

(2) By Proposition 2.3(3). �

Proposition 2.7. The following statements are equivalent for a module M .

(1) All modules are SA-M -injective.

(2) All semi-artinian modules are SA-M -injective.

(3) All semi-artinian submodules of M are SA-M -injective.

(4) All semi-artinian submodules of M are direct summands of M .

Proof. Straightforward. �

Proposition 2.7 implies the next result.

Corollary 2.8. For a ring R, the following conditions are equivalent.

(1) Mod-R = SAIR.

(2) All semi-artinian modules are SA-injective.

(3) All semi-artinian right ideals of R are SA-injective.

(4) If I ⊆sa RR, then I is a direct summand of RR.

Corollary 2.9. A module M is semisimple if and only if M is semi-artinian

and all modules are SA-M -injective.

Proof. (⇒) It is obvious.

(⇐) If K is a submodule of M , then K is semi-artinian by [9, p. 238] and

hence Proposition 2.7 implies that K is a direct summand of M . Thus M is a

semisimple module. �

As a special case of Corollary 2.9, we have the following corollary.

Corollary 2.10. A ring R is a right semisimple ring if and only if it is a right

semi-artinian ring and Mod-R = SAIR .

In general, not every semi-artinian submodule of a projective module is

projective, for example, if M = Z4 as Z4-module and K = 2Z4, then K ⊆sa M
but K is not a projective Z4-module.
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Theorem 2.11. The following conditions are equivalent for a projective module

M .

(1) The class of SA-M -injective modules is closed under quotient.

(2) Every quotient of an injective module is SA-M -injective.

(3) If K1 and K2 are two SA-M -injective submodules of a module N , then

K1 +K2 is SA-M -injective.

(4) If K1 and K2 are two injective submodules of a module N , then K1 + K2

is SA-M -injective.

(5) If K ⊆sa M , then K is projective.

Proof. (1)⇒ (2) and (3)⇒ (4) are obvious.

(2)⇒ (5) Consider the following diagram:

0 // K

f

��

� � i //// M

E
h // N // 0

where N and E are modules, K is a semi-artinian submodule of M , h is an

epimorphism and f is a homomorphism. We can assume that E is injec-

tive (see, e.g. [3, Proposition 5.2.10]). By SA-M -injectivity of N , f can be

extended to a homomorphism g : M −→ N . By projectivity of M , there is a

homomorphism g̃ : M −→ E such that h ◦ g̃ = g. Let f̃ : K −→ E be the

restriction of g̃ over K. It is clear that h ◦ f̃ = f . Then K is projective.

(5) ⇒ (1) Let L and N be modules such that N is SA-M -injective and

h : N −→ L is an epimorphism. If K ⊆sa M and f : K −→ L is any

homomorphism, then the hypothesis implies that K is projective and hence

there is a homomorphism g : K −→ N with h ◦ g = f . By SA-M -injectivity

of N , there is a homomorphism g̃ : M −→ N with g̃ ◦ i = g. Let β = h ◦ g̃ :

M −→ L. Then β ◦ i = h ◦ g̃ ◦ i = h ◦ g = f . and hence L is an SA-M -injective

module.

(1) ⇒ (3) Let K1 and K2 be two SA-M -injective submodules of a module

K. Thus K1 +K2 is a homomorphic image of the direct sum K1⊕K2. SA-M -

injectivity of K1⊕K2 and the hypothesis imply that K1+K2 is SA-M -injective.

(4)⇒ (2) Let F be an injective module with submodule D. Let B = F ⊕F ,

L = {(x, x) | x ∈ D}, B̄ = B/L, K1 = {b + L ∈ B̄ | b ∈ F ⊕ 0}, K2 =

{b + L ∈ B̄ | b ∈ 0 ⊕ F}. Then B̄ = K1 + K2. Since (F ⊕ 0) ∩ L = 0 and

(0⊕ F ) ∩ L = 0, F ∼= Ki, i = 1, 2. Since K1 ∩K2 = {b+ L ∈ B̄ | b ∈ D ⊕ 0}=
{b+ L ∈ B̄ | b ∈ 0⊕D}, K1 ∩K2

∼= D under b 7→ b+ L for all b ∈ D ⊕ 0. By

hypothesis, B̄ is SA-M -injective. Injectivity of K1 implies that B̄ = K1 ⊕ A
for some submodule A of B̄, so A ∼= (K1 +K2)/K1

∼= K2/K1 ∩K2
∼= F/D. By

Proposition 2.3(5), F/D is SA-M -injective. �

Theorem 2.11 implies the following result.
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Corollary 2.12. The following statements are equivalent.

(1) The class SAIR is closed under quotient.

(2) Every quotient of an injective module is SA-injective.

(3) For any module N , if N1 and N2 are submodules of N with N1, N2 ∈ SAIR,

then N1 +N2 ∈ SAIR.

(4) For any module N , if N1 and N2 are injective submodules of N , then

N1 +N2 ∈ SAIR.

(5) If I ⊆sa RR, then I is projective.

Theorem 2.13. If M is a finitely generated module, then the following state-

ments are equivalent.

(1) Sa(M) is noetherian.

(2) The class of SA-M -injective modules is closed under direct sums.

(3) Direct sums of injective modules are SA-M -injective.

(4) If K is injective module, then K(S) is SA-M -injective for any index set S,

.

(5) If K is injective module, then K(N) is SA-M -injective.

Proof. (2)⇒ (3)⇒ (4)⇒ (5) Clear.

(1) ⇒ (2) Let E =
⊕
i∈I
Mi, where Mi are SA-M -injective modules and f :

K → E be a homomorphism with K ⊆sa M . Since Sa(M) is a noetherian

module, we have K is finitely generated and hence f (K) ⊆
⊕
j∈I1

Mj , for some

finite subset I1 of I and hence
⊕
j∈I1

Mj is SA-injective. Then f can be extended

to a homomorphism g : M → E and so E is SA-injective.

(5) ⇒ (1) Let K1 ⊆ K2 ⊆ ... be a chain of submodules of Sa(M). For each

i ≥ 1, let Fi = E(M/Ki), F =
∞⊕
i=1

Fi and Mi =
∞∏
j=1

Fj = Fi ⊕ (
∞∏
j=1
j 6=i

Fj), then Mi

is injective. By hypothesis,
∞⊕
i=1

Mi = (
∞⊕
i=1

Fi)⊕ (
∞⊕
i=1

∞∏
j=1
j 6=i

Fj) is SA-M -injective and

hence Proposition 2.3(1) implies that F it self is SA-M-injective.

Define f : H =
∞⋃
i=1

Ki −→ F by f (a) = (a + Ki)i. Clearly, f is a well defined

homomorphism. Since Sa(M) ⊆sa M (by [9, p. 238]), we have
∞⋃
i=1

Ki ⊆sa

M and hence f can be extended to a homomorphism g : M −→ F . Since

M is finitely generated, we have g(M) ⊆
n⊕

i=1

E(M/Ki) for some n and hence

f (
∞⋃
i=1

Ki) ⊆
n⊕

i=1

E(M/Ki). Since πif(x) = πi(x + Kj)j≥1 = x + Ki, for all

x ∈H and i ≥ 1, where πi :
⊕
j≥1

E(M/Kj) −→ E(M/Ki) is the projection map,

πif(H) = H/Ki for all i ≥ 1. Since f (H) ⊆
n⊕

i=1

E(M/Ki), H /Ki = πif(H) = 0,
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58 A. R. Mehdi

for all i ≥ n+1, so H = Ki for all i ≥ n+1 and hence the chain K1 ⊆ K2 ⊆ ...
terminates at Kn+1. Thus Sa(M) is a noetherian module. �

Proposition 2.14. The following statements are equivalent.

(1) Sa(RR) is noetherian.

(2) The class SAIR is closed under direct sums.

(3) Any direct sum of injective modules is SA-injective.

(4) If K is injective module, then K(S) is SA-injective for any index set S.

(5) If K is injective module, then K(N) is SA-injective.

(6) The class SAIR is closed under pure submodules.

(7) All FP -injective modules are SA-injective.

Proof. By applying Theorem 2.13, we have the equivalent of (1), (2), (3), (4)

and (5).

(1) ⇒ (6). Let N ∈ SAIR and K a pure submodule of N . Let C ⊆sa RR,

thus the hypothesis implies that C is finitely generated and so R/C is a finitely

presented. Hence the sequence HomR(R/C,N) → HomR(R/C,N/K) → 0 is

exact. By [8, Theorem XII.4.4 (4), p. 491], the sequence HomR(R/C,N) →
HomR(R/C,N/K)→ Ext1(R/C,K)→ Ext1(R/C,N) is exact. Thus Ext1(R/C,K) =

0 and hence K ∈ SAIR. Therefore, the class SAIR is closed under pure sub-

modules.

(6) ⇒ (7). If M is any FP -injective module, then M is a pure submodule

of a SA-injective module. By hypothesis, M ∈ SAIR.

(7)⇒ (1). Let I be a submodule of Sa(RR), thus I ⊆sa RR. Let α : I →M

be a homomorphism, where M is a FP -injective module. By hypothesis, M

is SA-injective and hence α extends to RR. By [6], I is finitely generated and

hence Sa(RR) is a noetherian module. �

3. Definability of the class SAIR

If X ⊆Mod-R, then we write X	 = {M ∈ R-Mod |M∗ =HomZ(M,Q/Z) ∈
X} and X+ = {M ∈ Mod-R |M is a pure submodule of a module in X} .

Lemma 3.1. The pair ((SAIR)	, SAIR) is an almost dual pair over a ring R.

Proof. By Corollary 2.4 and [12, Proposition 4.2.11, p. 72]. �

Corollary 3.2. Consider the following conditions for the class SAIR over a

ring R.

(1) The class SAIR is definable.

(2) (SAIR, (SAIR)	) is an almost dual pair over a ring R.

(3) (SAIR)∗ ⊆ (SAIR)	.

(4) (SAIR)∗∗ ⊆ SAIR.

(5) The class SAIR is closed under pure homomorphic images.

Then (1)⇔ (2), (1)⇒ (3), (1)⇒ (5) and (3)⇔ (4). Moreover, if Sa(RR) is

noetherian, then all five conditions are equivalent.
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Proof. (1)⇔ (2). By Lemma 3.1 and [12, Proposition 4.3.8, p. 89].

(1)⇒ (3). Since SAIR is a definable class, it is closed under pure submod-

ules and hence (SAIR)+ = SAIR. Since ((SAIR)	, SAIR) is an almost dual

(by Lemma 3.1), it follows from [12, Theorem 4.3.2, p. 85], that (SAIR)∗ ⊆
(SAIR)	.

(1)⇒ (5). By [16, 3.4.8, p. 109].

(3)⇒ (4). By Lemma 3.1 and [12, Theorem 4.3.2, p. 85].

(4)⇒ (1) and (5)⇒ (1). Suppose that Sa(RR) is a noetherian module. By

Proposition 2.14, the class SAIR is closed under pure submodules and hence

(SAIR)+ = SAIR. Thus the results follow from [12, Theorem 4.3.2, p. 85]. �

Corollary 3.3. If every SA-injective modules is pure-injective, then the fol-

lowing statements are equivalent for a class SAIR over a ring R.

(1) SAIR is definable.

(2) The class SAIR is closed under direct sums.

(3) (SAIR)+ = SAIR
(4) Sa(RR) is a noetherian module.

Proof. By Proposition 2.14, Lemma 3.1 and [12, Theorem 4.5.1, p. 103]. �

If A is a a right R-module and B is a left R-module, then Tor1(A,B) is

defined as the first left derived functor of the tensor product A ⊗R B (see [4,

Ch. VI] for more details).

Lemma 3.4. A left R-module M ∈ (SAIR)	 iff Tor1(R/I,M) = 0, for any

semi-artinian right ideal I of a ring R.

Proof. Let M be a left R-module and I ⊆sa RR. By [7, Theorem 3.2.1, p. 75],

Ext1(R/I,M∗) ∼= (Tor1(R/I,M))∗, so that Tor1(R/I,M) = 0 if and only if

M∗ ∈ SAIR. Hence (RSAF, SAIR) is an almost dual, where RSAF = {M ∈ R-

Mod| Tor1(R/I,M) = 0, for any semi-artinian right ideal I of a ring R}. By

[12, Proposition 4.2.11, p. 72], (SAIR)	 =R SAF . �

A module M is called n-presented if there is an exact sequence Fn → Fn−1 →
· · · → F0 →M → 0, with each Fi is a finitely generated free modules [5].

Theorem 3.5. The following statements are equivalent for a class SAIR over

a ring R.

(1) SAIR is definable.

(2) The class SAIR is closed under pure submodules and pure homomorphic

images.

(3) Every semi-artinian right ideal in R is finitely presented.

(4) A module M ∈ SAIR iff M∗ ∈ (SAIR)	.

(5) A module M ∈ SAIR iff M∗∗ ∈ SAIR.

Proof. (1)⇒ (2). By [16, 3.4.8, p. 109].
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(2) ⇒ (3). Let N be any FP -injective module, thus there is an injective

module H with pure exact sequence 0→ N
i→ H

π→ H/N → 0. By hypothesis,

H/N ∈ SAIR. Let K ⊆sa RR, thus Ext1(R/K,H/N)

= 0. By [8, Theorem 4.4 (4), p. 491], the sequence 0 = Ext1(R/K,H/N) →
Ext2(R/K,N) →
Ext2(R/K,H) = 0 is exact and hence Ext2(R/K,N) = 0. By [8, Theorem 4.4

(3), p. 491], the sequence 0 =Ext1(R,N)→ Ext1(K,N)→ Ext2(R/K,N) = 0

is exact, so that Ext1(K,N) = 0. By hypothesis, SAIR is closed under pure

submodules, so that K is finitely generated by Proposition 2.14 and hence [6,

Proposition, p. 361] implies that K is finitely presented.

(3)⇒ (1). Let M ∈ SAIR. Let K ⊆sa RR, thus K is finitely presented (by

hypothesis) and hence there is an exact sequence F2
α2→ F1

α1→ K → 0, where

F1, F2 are finitely generated free modules. Let β = iα1, where i : K → R

is the inclusion mapping, thus the sequence F2
α2→ F1

β→ R
π→ R/K → 0 is

exact, where π : R → R/K is the natural epimorphism. Hence R/K is a 2-

presented module, so that from [5, Lemma 2.7 (2)] we have Tor1(R/K,M∗) ∼=
(Ext1(R/K,M))∗ = 0. By Lemma 3.4, M∗ ∈ (SAIR)	 and hence (SAIR)∗ ⊆
(SAIR)	. By hypothesis, every semi-artinian right ideal in R is finitely gen-

erated, so that Sa(RR) is noetherian. By Corollary 3.2, SAIR is a definable

class.

(1) ⇒ (4). By Corollary 3.2, (SAIR, (SAIR)	) is an almost dual pair and

hence a module M ∈ SAIR iff M∗ ∈ (SAIR)	.

(4)⇒ (5). By hypothesis, (SAIR)∗ ⊆ (SAIR)	. By Corollary 3.2, (SAIR)∗∗ ⊆
SAIR. Hence for any module M , if M ∈ SAIR, then M∗∗ ∈ SAIR.

Conversely, if M∗∗ ∈ SAIR, then M∗ ∈ (SAIR)	. By hypothesis, M ∈ SAIR.

(5) ⇒ (1). Let N be a FP -injective module, thus there is a pure exact

sequence 0 → N → E → E/N → 0, where E is an injective module. By [21,

34.5, p. 286], the sequence 0 → N∗∗ → E∗∗ → (E/N)∗∗ → 0 is split. By

hypothesis, E∗∗ ∈ SAIR and hence N∗∗ ∈ SAIR. By hypothesis, N ∈ SAIR
so that Sa(RR) is noetherian by Proposition 2.14. Thus SAIR is definable class

by Corollary 3.2. �

Note that if the class SAIR is closed under pure submodules, then (SAIR)+ =

SAIR. Thus we have the following corollary.

Corollary 3.6. The class SAIR is a definable if and only if it is closed under

pure submodules and the class (SAIR)+ is a definable.

Corollary 3.7. If the class SAIR is a definable, then the following are equiv-

alent.

(1) The class of flat left R-modules and the class (SAIR)	 are coincide.

(2) Every module in SAIR is FP -injective.

(3) Every pure-injective module in SAIR is injective.
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Proof. (1) ⇒ (2). Let M ∈ SAIR, thus M∗ ∈ (SAIR)	 by Corollary 3.2. By

hypothesis, M∗ is a flat left R-module and hence [10, Theorem, p. 239] implies

that M∗∗ is injective. Since M is a pure submodule in M∗∗, we have M is

FP -injective by [21, 35.8, p. 301].

(2)⇒ (3). Let M be any pure-injective module in SAIR. Let E : 0→M →
N → K → 0 be an exact sequence. By hypothesis, M is FP -injective. By [17,

Proposition 2.6], the sequence E is pure and hence pure-injectivity of M implies

that the sequence E is split by [21, 33.7, p. 279]. Therefore, M is injective.

(3)⇒ (1). Let M be a flat left R-module, thus Tor1(N,M) = 0, for any right

R-module N . By Lemma 3.4, M ∈ (SAIR)	. Conversely, if M ∈ (SAIR)	,

then M∗ ∈ SAIR. By [16, Proposition 4.3.29, p. 149], M∗ is a pure injective

module. By hypothesis, M∗ is injective and hence M is flat by [10, Theorem,

p. 239]. �

4. Relations between SA-injectivity and certain generalizations

of injectivity

A right R-module M is called quasi-injective if, for every submodule N of

M , every right R-homomorphism from N to M can be extended to a right

R-endomorphism of M [3, p. 169].

In general, if M is SA-injective right R-module, then M need not be quasi-

injective, for example Z as Z-module is SA-injective (by Example 2.2(1)) but

it is not quasi-injective. Also, the converse is not true in general, for example

in the ring Z4, the ideal I =< 2̄ > is a quasi-injective Z4-module but it is not

SA-injective Z4-module.

The following theorem gives a relation between SA-injective modules and

quasi-injective modules.

Theorem 4.1. The following statements are equivalent for a ring R.

(1) R is a right semi-artinian ring.

(2) Every SA-injective right R-module is injective.

(3) Every SA-injective right R-module is quasi-injective.

(4) Every cyclic SA-injective right R-module is quasi-injective.

Proof. (1) ⇒ (2) Let M be any SA-injective right R-module. Let I be any

right ideal of a ring R and f : I →M be any right R-homomorphism. Since R

is a right semi-artinian ring (by hypothesis), it follows from [9, Exercise 7(8),

p. 238] that I is a semi-artinian right ideal of R. Since M is an SA-injective

right R-module (by hypothesis), f extends to R and hence M is an injective

right R-module.

(2)⇒ (3) and (3)⇒ (4) are clear.
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(4)⇒ (1) Let M be any nonzero cyclic right R-module. We will prove that

Soc(M) 6= 0. Assume that Soc(M) = 0. Let N be a nonzero submodule of

M . Thus Soc(N) = 0 and hence from Example 2.2(4) that M and N are SA-

injective right R-modules. By Corollary 2.4, N ⊕M is an SA-injective right

R-module. By hypothesis, N ⊕M is a quasi-injective right R-module. By [15,

Proposition 1.17, p. 8], N is an M -injective right R-module and hence N is a

direct summand of M . Thus M is semisimple and hence M =Soc(M) = 0 and

this is a contradiction. Thus Soc(M) 6= 0 for any nonzero cyclic right R-module

M and hence from [18, p. 183] we have that R is a right semi-artinian ring. �

Since every left perfect ring is right semi-artinian [9, Theorem 11.6.3, p.

294], we have the following corollary immediately from Theorem 4.1.

Corollary 4.2. If R is a left perfect ring, then every SA-injective right R-

module is injective (quasi-injective).

In the following proposition, we give another connection between SA-injective

modules and quasi-injective modules.

Proposition 4.3. A commutative ring R is semisimple if and only if R is a

semi-artinian ring and every quasi-injective R-module is SA-injective.

Proof. (⇒) By Corollary 2.10.

(⇐) Let M be any quasi-injective R-module. By hypothesis, M is SA-injective.

Since R is a semi-artinian ring (by hypothesis), it follows from Theorem 4.1 that

M is injective and hence from [19, Corollary 2.2] we get that R is a semisimple

ring. �

The following corollary is immediately from Theorem 4.1 and Proposition 4.3.

Corollary 4.4. The following statements are equivalent for a commutative

ring R.

(1) R is semisimple.

(2) For each R-module M , M is SA-injective if and only if it is quasi-injective

.

A right R-module M is called P-injective (resp. F-injective) if, for ev-

ery principally (resp. finitely generated) right ideal I of R, every right R-

homomorphism from I to M can be extended to a right R-homomorphism

from R into M (see, for example [11] and [22]).

If M is SA-injective right R-module, then M need not be P-injective (resp.

F-injective) in general, for example Z as Z-module is SA-injective (by Exam-

ple 2.2(1)) but it is not P-injective (resp. F-injective). Also, the converse is not

true in general, for example: let F = Z2 be the field of two elements, Fn = F

for n = 1, 2, ..., Q =
∏∞
i=1 Fi, S = ⊕∞i=1Fi. If R is the subring of Q generated
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by 1 and S, then R is a F-injective right R-module (by [1, Example 4.5]) and

hence RR is a P-injective module. Thus Example 4.5 in [1] implies that R is

not a soc-injective right R-module and so R is not a SA-injective module. Thus

R is F-injective (P-injective) right R-module but it is not SA-injective.

The following proposition gives a condition under which every F-injective

right R-module is SA-injective.

Proposition 4.5. Let R be a ring. Then Sa(RR) is a noetherian right R-

module if and only if every F-injective right R-module is SA-injective.

Proof. (⇒) Let M be any F-injective right R-module. Let I be a semi-artinian

right ideal of R and let f : I → M be any right R-homomorphism. Since

Sa(RR) is noetherian and I ⊆ Sa(RR), it follows that I is a finitely generated

right ideal. By F-injectivity of M , f extends to a right R-homomorphism from

R into M and hence M is SA-injective.

(⇐) Let {Mi}i∈I be a family of injective right R-modules. Thus Mi are F-

injective modules. By [22, Proposition 2.1(c)],
⊕

i∈IMi is an F-injective mod-

ule. By hypothesis,
⊕

i∈IMi is a SA-injective module and hence from Propo-

sition 2.14 we get that Sa(RR) is a noetherian right R-module. �

Directly from Proposition 4.5 and Proposition 2.14, we have the following

corollary.

Corollary 4.6. Let R be a ring. Then every F-injective right R-module is

SA-injective if and only if every FP-injective right R-module is SA-injective.

A ring R is called (von Neumann) regular if for any a ∈ R, there is b ∈ R
such that a = aba [9, p. 38].

Proposition 4.7. The following statements are equivalent.

(1) R is a (von Neumann) regular ring and every P-injective right R-module is

SA-injective.

(2) R is a (von Neumann) regular ring and Sa(RR) is a noetherian right R-

module.

(3) Every SA-injective right R-module is P-injective and every semi-artinian

right ideal of R is a direct summand of RR.

Proof. (1)⇒ (2) Since every F-injective right R-module is P-injective, we have

from hypothesis that every F-injective right R-module is SA-injective. By

Proposition 4.5, Sa(RR) is a noetherian right R-module.

(2)⇒ (3) Since R is a (von Neumann) regular ring, it follows from [14, Lemma

2] that every SA-injective right R-module is P-injective. Let I be any semi-

artinian right ideal of R. Thus I ⊆ Sa(RR). Since Sa(RR) is a noetherian right

R-module (by hypothesis), we have that I is a finitely generated right ideal.

By [9, Exercise 13, p. 38], I is a direct summand of RR.
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(3)⇒ (1) Since every semi-artinian right ideal of R is a direct summand of RR
(by hypothesis), it follows that from Corollary 2.8 that every right R-module is

SA-injective and hence every P-injective right R-module is SA-injective. Since

every SA-injective right R-module is P-injective (by hypothesis), we have that

every right R-module is P-injective. By [14, Lemma 2], R is a (von Neumann)

regular ring. �
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345-349.

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

8.
2.

51
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.ir

 o
n 

20
24

-0
3-

20
 ]

 

Powered by TCPDF (www.tcpdf.org)

                            15 / 15

http://dx.doi.org/10.61186/ijmsi.18.2.51
http://ijmsi.ir/article-1-1626-en.html
http://www.tcpdf.org

