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Abstract. One of the important features of an interconnection network

is its ability to efficiently simulate programs or parallel algorithms written

for other architectures. Such a simulation problem can be mathematically

formulated as a graph embedding problem. In this paper we compute the

lower bound for dilation and congestion of embedding onto wheel-like

networks. Further, we compute the exact dilation of embedding wheel-

like networks into hypertrees, proving that the lower bound obtained is

sharp. Again, we compute the exact congestion of embedding windmill

graphs into circulant graphs, proving that the lower bound obtained is

sharp. Further, we compute the exact wirelength of embedding wheels

and fans into 1,2-fault hamiltonian graphs. Using this we estimate the

exact wirelength of embedding wheels and fans into circulant graphs,

generalized Petersen graphs, augmented cubes, crossed cubes, Möbius

cubes, twisted cubes, twisted n-cubes, locally twisted cubes, generalized
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twisted cubes, odd-dimensional cube connected cycle, hierarchical cubic

networks, alternating group graphs, arrangement graphs, 3-regular planer

hamiltonian graphs, star graphs, generalised matching networks, fully

connected cubic networks, tori and 1-fault traceable graphs.

Keywords: Embedding, Wheel, Friendship graph, Median, Hamiltonian.

2000 Mathematics subject classification: 05C60, 05C85.

1. Introduction

Graph embedding is a powerful method in parallel computing that maps a

guest network G into a host network H (usually an interconnection network). A

graph embedding has a lot of applications, such as processor allocation, archi-

tecture simulation, VLSI chip design, data structures and data representations,

networks for parallel computer systems, biological models that deal with visual

stimuli, cloning and so on [1, 2, 3, 4].

The performance of an embedding can be evaluated by certain cost criteria,

namely the dilation, the edge congestion and the wirelength. The dilation of

an embedding is defined as the maximum distance between pairs of vertices of

the host graph that are images of adjacent vertices of the guest graph. It is a

measure for the communication time needed when simulating one network on

another. The congestion of an embedding is the maximum number of edges of

the guest graph that are embedded on any single edge of the host graph. An

embedding with a large congestion faces many problems, such as long commu-

nication delay, circuit switching and the existence of different types of uncon-

trolled noise. The wirelength of an embedding is the sum of the dilations in

host graph of edges in guest graph [3, 5].

Ring or path embedding in interconnection networks is closely related to

the hamiltonian problem [6–9] which is one of the well known NP-complete

problems in graph theory. If an interconnection network has a hamiltonian

cycle or a hamiltonian path, ring or linear array can be embedded in this

network. Embedding of linear arrays and rings into a faulty interconnection

network is one of the central issues in parallel processing. The problem is

modeled as finding fault-free paths and cycles of maximum length in the graph

[10].

The wheel-like networks plays an important role in the circuit layout and

interconnection network designs. Embedding of wheels and fans in intercon-

nection networks is closely related to 1-fault hamiltonian problem. A graph G

is called f -fault hamiltonian if there is a cycle which contains all the non-faulty

vertices and contains only non-faulty edges when there are f or less faulty ver-

tices and/or edges. Similarly, a graph G is called f -fault traceable if for each

pair of vertices u and v, there is a path from u to v which contains all the
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non-faulty vertices and contains only non-faulty edges when there are f or less

faulty vertices and/or edges. We note that if a graph G is hypohamiltonian,

hyperhamiltonian or almost pancyclic then it is 1-fault hamiltonian [11] and it

has been well studied in [8, 11, 12].

The rest of the paper is organized as follows: Section 2 gives definitions

and other preliminaries. In Section 3, we compute the dilation, congestion and

wirelength of embedding onto wheel-like networks. Finally, concluding remarks

and future works are given in Section 4.

2. Preliminaries

In this section we give basic definitions and preliminaries related to embed-

ding problems.

Definition 2.1. [13] Let G and H be finite graphs. An embedding of G into

H is a pair (f, Pf ) defined as follows:

(1) f is a one-to-one map: V (G)→ V (H)

(2) Pf is a one-to-one map from E(G) to {Pf (e) : Pf (e) is a path in H

between f(u) and f(v) for e = uv ∈ E(G)}.

By abuse of language we will also refer to an embedding (f, Pf ) simply by

f . The expansion of an embedding f is the ratio of the number of vertices of

H to the number of vertices of G. In this paper, we consider embeddings with

expansion one.

Definition 2.2. [13] Let f be an embedding of G into H. If e = uv ∈ E(G),

then the length of Pf (e) in H is called the dilation of the edge e denoted by

dilf (e). Then

dil(G,H) = min
f :G→H

max
e∈E(G)

dilf (e).

Definition 2.3. [13] Let f be an embedding of G into H. For e ∈ E(H), let

ECf (e) denotes the number of edges xy of G such that e is in the path Pf (xy)

between f(x) and f(y) in H.

In other words, ECf (e) = |{xy ∈ E(G) : e ∈ Pf (xy)}| . Then

EC(G,H) = min
f :G→H

max
e∈E(H)

ECf (e).

Further, if S is any subset of E(H), then we define ECf (S) =
∑
e∈S

ECf (e).

Definition 2.4. [14] Let f be an embedding of G into H. Then the wirelength

of embedding G into H is given by

WL(G,H) = min
f :G→H

∑
e∈E(G)

dilf (e) = min
f :G→H

∑
e∈E(H)

ECf (e).
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Figure 1. Wiring diagram of torus G into path H with

dilf (G,H) = 6, ECf (G,H) = 8 and WLf (G,H) = 48.

An illustration for dilation, congestion and wirelength of an embedding torus

G into a path H is given in Fig. 1. The dilation, the congestion, and the

wirelength problem are different in the sense that an embedding that gives

the minimum dilation need not give the minimum congestion (wirelength) and

vice-versa. But, it is interesting to note that, for any embedding g, the dilation

sum, the congestion sum and the wirelength are all equal.

Graph embeddings have been well studied for a number of networks [1,2,

4–7, 11, 13–34]. Even though there are numerous results and discussions on

the wirelength problem, most of them deal with only approximate results and

the estimation of lower bounds [13, 18]. But the Congestion Lemma and the

Partition Lemma [14] have enabled the computation of exact wirelength for em-

beddings of various architectures [14, 21, 23, 24, 32, 33]. In fact, the techniques

deal with the congestion sum [14] to compute the exact wirelength of graph

embeddings. In this paper, we overcome this difficulty by taking non-regular

graphs as guest graphs and use dilation-sum to find the exact wirelength.

Definition 2.5. [19, 35] A wheel graph Wn of order n is a graph that contains

an outer cycle or rim of order n − 1, and for which every vertex in the cycle

is connected to one other vertex (which is known as the hub or center). The

edges of a wheel which include the hub are called spokes.

Definition 2.6. [11, 36] A fan graph Fn of order n is a graph that contains a

path of order n− 1, and for which every vertex in the path is connected to one

other vertex (which is known as the core). In other words, a fan graph Fn is

obtained from Wn by deleting any one of the outer cycle edges.

Definition 2.7. [36] A friendship graph Tn of order 2n+ 1 is a graph consists

of n triangles with exactly one common vertex called the hub or center. Al-

ternatively, a friendship graph Tn can be constructed from a wheel W2n+1 by

removing every second outer cycle edge.

Definition 2.8. A windmill graph WMn of order 2n is obtained by deleting

a vertex v of degree 2 in Tn.
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Figure 2. (a) Wheel graph W17 (b) Fan graph F17 (c) Friend-

ship graph T8 and (d) Windmill graph WM8.

Definition 2.9. [3] A star graph Sn is the complete bipartite graph K1,n−1.

Figures 2(a), 2(b), 2(c) and 2(d) illustrate the wheel graph W12, fan F12,

friendship graph T8 and windmill graph WM8 respectively.

Definition 2.10. [37] The basic skeleton of a hypertree is a complete binary

tree Tr, where r is the level of a tree. Here the nodes of the tree are numbered

as follows: The root node has label 1. The root is said to be at level 1. Labels

of left and right children are formed by appending a 0 and 1, respectively, to

the label of the parent node, see Fig. 3(a). The decimal labels of the hypertree

in Fig. 3(a) are depicted in Fig. 3(b). Here the children of the node x are

labeled as 2x and 2x + 1. Additional links in a hypertree are horizontal and

two nodes in the same level i of the tree are joined if their label difference is

2i−2. We denote an r level hypertree as HT (r). It has 2r − 1 vertices and

3 (2r−1 − 1) edges.

Definition 2.11. [34] For any non-negative integer r, the complete binary tree

of height r − 1, denoted by Tr, is the binary tree where each internal vertex
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Figure 3. (a) HT (4) with binary labels (b) HT (4) with dec-

imal labels.

has exactly two children and all the leaves are at the same level. Clearly, a

complete binary tree Tr has r levels. Each level i, 1 ≤ i ≤ r, contains 2i−1

vertices. Thus, Tr has exactly 2r − 1 vertices. The sibling tree STr is obtained

from the complete binary tree Tr by adding edges (sibling edges) between left

and right children of the same parent node.

Definition 2.12. The X-tree XTr is obtained from the complete binary tree

Tr by adding the consequent vertices in each level by an edge.

For illustration, the sibling tree ST (5) and X-tree XT5 are given in Figure

4.

Definition 2.13. [22, 38] The undirected circulant graph G(n;±S), S ⊆
{1, 2, . . . , j}, 1 ≤ j ≤ bn/2c, is a graph with the vertex set V = {0, 1, . . . , n−1}
and the edge set E = {ik : |k − i| ≡ s(mod n), s ∈ S}.

It is clear thatG(n;±1) is the undirected cycle Cn andG(n;±{1, 2, . . . , bn/2c})
is the complete graph Kn. The cycle G(n;±1) ' Cn contained in

G(n;±{1, 2, . . . , j}), 1 ≤ j ≤ bn/2c is sometimes referred to as the outer cycle

C of G.

Definition 2.14. [19] Let v be a vertex in G. The eccentricity of v, denoted

by ε(v), is ε(v) = max{d(u, v)|u ∈ V }. The maximum eccentricity is the graph

diameter d(G). That is, d(G) = max{ε(v) : v ∈ V }. The minimum eccentricity

is the graph radius r(G). That is, r(G) = min{ε(v) : v ∈ V }. For brevity, we

denote d(G) and r(G) as d and r respectively.

Notation: For a graph G, the minimum degree and the maximum degree is

denoted by δ(G) and 4(G) respectively. For u ∈ V (G), let Ni(u) denotes the

set of all vertices of G at distance i from u, 1 ≤ i ≤ d, where d denotes the

diameter of G.
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Figure 4. (a) Sibling tree ST (5) (b) X-tree XT5.

3. Main Results

In this section we compute the dilation, congestion and wirelength of em-

bedding onto wheel-like networks.

3.1. Dilation.

Lemma 3.1. Let G be a graph with 4(G) = n − 1 and H be a graph with

|V (G)| = |V (H)| = n. Then dil(G,H) ≥ r, where r is the radius of H.

Proof. Since 4(G) = n − 1, there exists a vertex u ∈ V (G) such that d(u) =

n − 1. Let f be an embedding from V (G) to V (H) and map f(u) = v. If

eccentricity of v is minimum, then dil(G,H) ≥ r. Otherwise, dil(G,H) ≥ r+1.

Hence the proof. �

Corollary 3.2. Let G be a graph with 4(G) = n − 1 and H be a vertex-

transitive graph with |V (G)| = |V (H)| = n. Then dil(G,H) = d, where d is

the diameter of H.

We now compute the dilation of embedding wheel-like networks into hyper-

tree and prove that the lower bound obtained in Lemma 3.1 is sharp.
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Figure 5. (a) Labelling of T7 (b) Labelling of HT (4).

Theorem 3.3. Let G beWn or Fn or Tn−1
2

or Sn, and H be an l-level hypertree

HT (l), where 2l − 1 = n, l ≥ 3. Then dil(G,H) = r = l − 1, where r is the

radius of H.

Proof. Since 4(G) = n − 1 and by Lemma 3.1, we have dil(G,H) ≥ r. We

now prove the equality.

Label the vertices of G as follows:

• hub vertex as 1;

• outer vertices as 2, 3, . . . , n consecutively start with any vertex in the

clockwise or anti-clockwise direction, see Fig. 5(a).

Removal of the horizontal edges in hypertree HT (l) leaves a complete binary

tree Tl. Label the vertices of Tl using pre-order labeling begin with level 1

vertex, see Fig. 5(b). Let f(x) = x for all x ∈ V (G), and for ab ∈ E(G) let

Pf (ab) be a shortest path between f(a) and f(b) in HT (l).

Since the hub vertex with label 1 in V (G) is mapped into a vertex f(1) = 1

in V (H) is in level 1 gives the minimum eccentricity of H and hence any edge

e = uv ∈ E(G) with either u or v as a hub vertex is mapped into a path Pf (uv)

in H with dilation at most l − 1, which is nothing but the radius r of H.

We now claim that the outer edges of G are mapped into a path of length

at most l − 1 in H. Since the graph H is obtained from Tl, the left and right

children of any parent node in level l − 1 is connected by a path of length

2. By the labeling of pre-order traversal in Tl, for any parent node in level i,

1 ≤ i ≤ l−2, the right most vertex of a left node and the right node of a parent

node are connected by a path length at most l − 1 and hence the dilation of

any outer edge in G is at most l − 1 in H. Hence the proof. �

Using the same approach, we prove the following result.
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Theorem 3.4. Let G be Wn or Fn or Tn−1
2

or Sn and H be a l-level sibling

tree ST (l) or l-level X-tree XTl, where 2l − 1 = n, l ≥ 3. Then dil(G,H) =

r = l − 1, where r is the radius of H.

3.2 Congestion.

In this section, we first obtain the lower bound for congestion of embedding

onto wheel-like networks. Then prove that the lower bound obtained is sharp

for embedding windmill graphs into circulant graphs. To prove the main result,

we need the following result.

Lemma 3.5. Let G be a graph with 4(G) = n − 1 and H be a graph with

|V (G)| = |V (H)| = n. Then EC(G,H) ≥ d n−1
4(H)e.

Proof. Since4(G) = n−1, there exist a vertex u ∈ V (G) such that d(u) = n−1,

where n = |V (G)|. Let f be an embedding from V (G) to V (H) and map

f(u) = v. Let S = {e : d(v, w) = 1, w ∈ V (H)}, then for any e ∈ S,

ECf (e) ≥ min

{
n− 1

δ0
,
n− 1

δ1
, . . . ,

n− 1

δn

}
=

⌈
n− 1

δn

⌉
,

where δi is the degree of a vertex vi in H with δ(H) = δ0 ≤ δ1 ≤ · · · ≤ δi ≤
· · · ≤ δn = 4(H), 0 ≤ i ≤ n. Thus, there is at least one edge in H with

congestion
⌈

n−1
4(H)

⌉
. Further, for any embedding g of G into H, ECg(e) ≥

ECf (e) ≥
⌈

n−1
4(H)

⌉
. Therefore,

EC(G,H) ≥ min
g

ECg(e) ≥ min
g

ECf (e) ≥
⌈
n− 1

4(H)

⌉
.

Hence the proof. �

We now compute the edge congestion of embedding windmill graphs into

circulant networks and prove that the lower bound obtained in Lemma 3.5 is

sharp.

Theorem 3.6. Let G be a windmill graph WM2n−1 and H be a circulant

network H(2n;±{1, 2n−2}), n ≥ 3. Then EC(G,H) = 2n−2.

Proof. Since 4(G) = n − 1 and by Lemma 3.5, EC(G,H) ≥ 2n−2. We now

prove the equality.

Label the vertices of G as follows:

• hub vertex as 1;

• pendent vertex as 2n;

• remaining vertices as 2, 3, . . . , 2n−1 consecutively start with any vertex

such that (i, i+ 1) are adjacent, where i even and 2 ≤ i ≤ 2n − 2.

Label the consecutive vertices of H(2n;±{1}) in H in the clockwise sense.

Let f(x) = x for all x ∈ V (G) and for ab ∈ E(G), let Pf (ab) be a shortest path

between f(a) and f(b) in H.
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Since H is vertex transitive, map the hub vertex u, which is labeled as 1 in

G into any vertex v = f(u) in H. Without loss of generality, the label of v as

1 i.e., f(u) = f(1) = 1 = v. Now, we map the edges in G into a path Pf in H

using the following algorithm.

• For (1i) ∈ E(G), let Pf (1i) pass through the outer cycle of H in the

clockwise direction, where 2 ≤ i ≤ 2n−2 + 1;

• For (1i) ∈ E(G), let Pf (1i) pass through the outer cycle of H in the

anti-clockwise direction, where 3 · 2n−2 + 1 ≤ i ≤ 2n;

• For (1i) ∈ E(G), let Pf (1i) pass through an edge, which is labelled as

(1, 2n−2+1) followed by the outer cycle of H in the clockwise direction,

where 2n−2 + 2 ≤ i ≤ 2n−1 + 1;

• For (1i) ∈ E(G), let Pf (1i) pass through an edge, which is labelled as

(1, 3 · 2n−2 + 1) followed by the outer cycle of H in the anti-clockwise

direction, where 2n−1 + 2 ≤ i ≤ 3 · 2n−2.

From the above algorithm, it is easy to see that the edge congestion of each

edge in H is at most 2n−2. At this stage, the following edges in H have 2n−2 as

the edge congestion and we denote the set by A = {(1, 2), (1, 2n−2 +1), (2n−2 +

1, 2n−2+2), (1, 2n)}. Now, the remaining edges (i, i+1), 2 ≤ i ≤ 2n−2 and i is

even in E(G) is mapped into a path of length 1 in H and it will not contribute

the congestion in any of the edges in A. Hence the proof. �

3.3 Wirelength

First, we start with the following definitions.

Definition 3.7. A graph G is hamiltonian if it has a hamiltonian cycle. A

hamiltonian graph G is k-fault hamiltonian if G − F remains hamiltonian for

every F ⊂ V (G) with |F | ≤ k.

Definition 3.8. For every v ∈ V in G, define D(v) =
∑
u∈V

d(u, v), where d(u, v)

is the distance between u and v in G. A vertex v for which D(v) is minimum

is called a median of G.

Theorem 3.9. Let G be a wheel graph Wn and H be a graph with u as a

median. Then WL(G,H) ≥ n− 1 +D(u). Equality holds if and only if H \ u
is hamiltonian.

Proof. Let u be the hub of Wn. Map u in G to u in H. Since u is a median

of H, D(u) =
∑
v∈V

d(u, v) =
k∑

i=1

|Ni(u)|, k ≤ d. Suppose H \ u is hamiltonian.

Map the outer (n− 1)-cycle in G to a hamiltonian cycle in H \ u. Thus

WL(G,H) = n− 1 +

k∑
i=1

|Ni(u)|, k ≤ d.

Conversely, suppose WL(G,H) = n− 1 +D(u). If H \u is not hamiltonian,

then the cycle in G cannot be mapped onto a cycle in H\u, a contradiction. �
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Proceeding in the same way, we have the following result.

Theorem 3.10. Let G be a fan graph Fn and H be a graph with u as a median.

Then WL(G,H) ≥ n− 2 +D(u). Equality holds if and only if H \ u contains

a hamiltonian path.

The host graphs in Theorem 3.9 and Theorem 3.10 cover a wide range of

graphs. This has motivate us to identify interconnection networks which fall

into this category:

Networks Justification for 1-fault Tolerance

Circulant graphs G(n;±S), {1, 2} ⊆ S ⊆ {1, 2, . . . , bn
2
c} 1-fault hamiltonian [3]

Generalized Petersen graphs P (n,m) hypohamiltonian/hyperhamiltonian [3, 39]

Augmented cubes AQn pancyclic [40]

Crossed cubes CQn almost pancyclic [41]

Möbius cubes MQn (n− 2)-fault almost pancyclic [10, 42]

Twisted cubes TQn (n− 2)-fault almost pancyclic [10, 43, 44]

Twisted n-cubes TnQ 1-fault hamiltonian [45]

Locally twisted cubes LTQn almost pancyclic [46]

Generalized twisted cubes GQn (n− 2)-fault almost pancyclic [10]

Odd dimensional cube connected cycle CCCn 1-fault hamiltonian [46]

Hierarchical cubic networks HCN(n) almost pancyclic [47]

Alternating group graphs AGn (n− 2)-fault hamiltonian [48]

Arrangement graphs An,k pancyclic [49]

3-regular planar hamiltonian graphs 1-fault hamiltonian [50]

(n, k)-star graphs Sn,k at most (n− 3)-fault hamiltonian [51]

Generalised matching network GMN (f + 2)-fault hamiltonian [52]

Fully connected cubic networks FCCNn 1-fault hamiltonian [53]

Tori T (d1, d2, . . . , dn) fault hamiltonian [54, 55]

1-fault traceable graphs 2-fault hamiltonian [Definition 3.7]

Table 1. List of 1-fault hamiltonian networks.
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