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Abstract. The Haar wavelet collocation with iteration technique is ap-

plied for solving a class of time-fractional physical equations. The ap-

proximate solutions obtained by two dimensional Haar wavelet with iter-

ation technique are compared with those obtained by analytical methods

such as Adomian decomposition method (ADM) and variational itera-

tion method (VIM). The results show that the present scheme is effec-

tive and appropriate for obtaining the numerical solution of the time-

fractional Modified Camassa-Holm equation and Time fractional Modi-

fied Degasperis-Procesi equation.

Keywords: Fractional differential equation, Haar wavelet, Operational matri-
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1. Introduction

Many phenomena in various fields of the science and engineering can be

modeled by fractional differential equations. The applications of fractional
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calculus have been demonstrated by many authors. For examples, fractional

calculus is applied to model the nonlinear oscillation of earthquake [1], fluid-

dynamic traffic [2], continuum and statistical mechanics [3], signal processing

[4], control theory [5], and dynamics of interfaces between nanoparticles and

subtracts [6].

Recently, orthogonal wavelets bases are becoming more popular for numer-

ical solutions of partial differential equations due to their excellent properties

such as ability to detect singularities, orthogonality, flexibility to represent a

function at different levels of resolution, and compact support. In recent years,

there has been a growing interest in developing wavelet based on numerical al-

gorithms for solution of fractional order partial differential equations ([7-15]).

Among them, the Haar wavelet method is the simplest and easiest to use. Haar

wavelets have been successfully applied for the solutions of ordinary and partial

differential equations, integral equations, and integro-differential equations.

In this work, we solve a family of important physically equations by combin-

ing Haar wavelet method and an iteration technique. We describe the nonlinear

fractional partial differential equation by an iteration technique and then con-

vert the obtained discretized equation into a Sylvester equation by the Haar

wavelet method to get the solution.

The above mentioned partial differential equation is as follows:

uαt − uxxt + (b+ 1)u2ux = buxuxx + uuxxx, (1.1)

with the initial and boundary conditions:

u(x, 0) = g(x), u(0, t) = y0(t), u(1, t) = y1(t), t ≥ 0, 0 < x < 1,

where b is a positive integer. For b = 2 and b = 3 Eq. (1.1) reduces to Time

Fractional Modified Camassa-Holm equation and Time Fractional Modified

Degasperis-Procesi equation, respectively.

The Camassa-Holm equation is used to describe physical model for the uni-

directional propagation of waves in shallow water [19, 20]. This equation is

widely used in fluid dynamics, continuum mechanics, aerodynamics, and mod-

els for shock wave formation, solitons, turbulence, mass transport, and the

solution representing the waters free surface above a flat bottom [21, 22]. The

Camassa-Holm equation has been obtained by Fokas and Fuchssteiner [23] and

Lenells [24]. Camassa and Holm [25] put forward the derivation of the solution

as a model for dispersive shallow water waves and revealed that it is formally

integrable finite dimensional Hamiltonian system and its solitary waves are

solitons. Many analytical methods have been implemented in recent past for

the study of nonlinear fractional differential equations arising in mathematical

physics [26-35]. Note that, there are some new papers on the time-fractional

diffusion equation in signal processing (see for example, [36] and [37]). The

Degasperis-Procesi equation was discovered by Degasperis and Procesi in a
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search for integrable equations similar in form to the Camassa-Holm equation,

and is widely used in fluid dynamics, aerodynamics, optimal fiber, biology, solid

state physics, geometry and oceanology.

2. Haar wavelet and operational matrix of general order

integration

The i th uniform Haar wavelet hi(x) , x ∈ [0, 1) is defined as:

hi(x) =


1 a(i) ≤ x ≤ b(i)
−1 b(i) ≤ x < c(i)

0 otherwise

(2.1)

where a(i) = k−1
m , b(i) = k−0.5

m , c(i) = k
m , i = 2j + k+ 1 , j = 0, 1, 2, 3, . . . , J

is dilation parameter, m = 2p+1 and k = 0, 1, 2, . . . , 2j−1 is translation param-

eter. The Maximum level of resolution is J . In particular h1(x) = χ[0,1)(x),

where χ[0,1)(x) is characteristic function on interval [0,1), is the Haar scal-

ing function. Let us define the collocation points xj = j−0.5
m where j =

1, 2, 3, . . . ,m.
We establish an operational matrix for integration via Haar wavelets. The

operational matrix of integration of general order is obtained by integration
Eq. (2.1) is as follows:

Pα,1(x) = Iαa(1)h1(x)

=
1

Γ(α)

∫ x

a(1)

(x− s)α−1ds, α > 0. (2.2)

Pα,i(x) = Iαa hi(x) =
1

Γ(α)
∫ x
a(i)

(x− s)α−1ds a(i) ≤ x < b(i),∫ b(i)
a(i)

(x− s)α−1ds−
∫ x
b(i)

(x− s)α−1ds b(i) ≤ x < c(i),∫ b(i)
a(i)

(x− s)α−1ds−
∫ c(i)
b(i)

(x− s)α−1ds x ≥ c(i).

(2.3)

By simplifying:

Pα,1(x) =
(x− a(1))α

Γ(α+ 1)
, (2.4)

and

Pα,i(x) = Iαa hi(x) =
1

Γ(α+ 1)
(x− a(i))α a(i) ≤ x < b(i),

(x− a(i))α − 2(x− b(i))α b(i) ≤ x < c(i),

(x− a(i))α − 2(x− b(i))α + (x− c(i))α x ≥ c(i).

(2.5)

Any function y ∈ L2[0, 1] can be expressed in terms of the Haar wavelet as:

y(x) =

∞∑
i=1

cihi(x), (2.6)
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where cis are the Haar wavelet coefficients given by ci =
∫ 1

0
y(x)hi(x)dx.

We can approximate the function y(x) by the truncated series

y(x) ≈
m−1∑
i=1

cihi(x). (2.7)

Taking the collocation point as x(i) = i−0.5
m where i = 1, 2, · · · ,m we define

Haar wavelet matrix Hm×m as:

Hm×m =


h1(x(1)) h1(x(2)) · · · h1(x(m))

h2(x(1)) h2(x(2)) · · · h2(x(m))
...

...
. . .

...

hm(x(1)) hm(x(2)) · · · hm(x(m))

 .

We can represent equation (2.7) in vector form as y = cH where c =

[c1, c2, . . . , cm]. The Haar coefficient ci can be evaluated by c = yH−1 where

H−1 is inverse of H. Similarly we can obtain the fractional order integration

matrix P of Haar function by substituting the collocation points in Eqs. (2.4)

and (2.5).

Pαm×m =


Pα,1(x(1)) Pα,1(x(2)) · · · pα,1(x(m))

Pα,2(x(1)) pα,2(x(2)) · · · Pα,2(x(m))
...

...
. . .

...

pα,m(x(1)) pα,m(x(2)) · · · pα,m(x(m))

 .

For example if m = 8 , α = 0.9, the Haar wavelet matrix of fractional
integration is:

P
0.9
8×8 =



0.0857 0.2305 0.3650 0.4941 0.6195 0.7421 0.8625 0.9811

0.0857 0.2305 0.3650 0.4941 0.4480 0.2812 0.1325 −0.0071

0.0857 0.2305 0.1935 0.0331 −0.0248 −0.156 −0.115 −0.0091

0 0 0 0 0.0857 0.2305 0.1935 0.0331

0.0857 0.0590 −0.0102 −0.0054 −.0037 −0.0028 −0.0022 −0.0018

0 0 0.0857 0.0590 −0.0102 −0.0054 −0.0037 −0.0028

0 0 0 0 0.0857 0.0590 −0.0102 −0.0054

0 0 0 0 0 0 0.0857 0.0590


.

We derive another operational matrix of fractional integration to solve the

fractional boundary value problems. Let η > 0 and g : [0, η]→ R be a contin-

uous function and assume that Haar function have [0, η) as compact support,

then

g(x)Iα0 h1(η) = g(x)

∫ η

0

(η − s)α−1ds (2.8)

vα,η,1 = g(x)Cα,1
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and

g(x)Iα0 hi(η) = g(x)

{∫ b(i)

a(i)

(η − s)α−1ds−
∫ c(i)

b(i)

(η − s)α−1ds

}
(2.9)

vα,η,i = g(x)Cα,i

where Cα,1 = ηα

Γ(α+1) , Cα,i = 1
Γ(α+1)

[
(η − a(i))α − 2(η − b(i))α + (η − c(i))α

]
.

By using the collocation points, we get:

V
α,η,g(x)
m×m =


g(x(1))Iα0 h1(η) g(x(2))Iα0 h1(η) · · · g(x(m))Iα0 h1(η)

g(x(1))Iα0 h2(η) g(x(2))Iα0 h2(η) · · · g(x(m))Iα0 h2(η)
...

...
. . .

...

g(x(1))Iα0 hm(η) g(x(2))Iα0 hm(η) · · · g(x(m))Iα0 hm(η)

 .

In particular, for η = 1, g(x) = x, α = 0.9, m = 8, we get:

V
0.9,1,x
8×8 =



.0650 .1950 .3249 .4549 .5849 .7148 .8448 .9748

−.0047 −.0140 −.0233 −.0326 −.0420 −.0513 −.0606 −.0700

−.0005 −.0015 −.0026 −.0036 −.0046 −.0056 −.0067 −.0077

−.0025 −.0075 −.0125 −.0175 −.0225 −.0275 −.0325 −.0375

−.0001 −.0003 −.0005 −.0007 −.0009 −.0012 −.0014 −.0016

−.0001 −.0004 −.0007 −.0011 −.0014 −.0017 −.0020 −.0023

−.0002 −.0008 −.0014 −.0019 −.0025 −.0030 −.0036 −.0041

−.0013 −.0040 −.0067 −.0094 −.0121 −.0147 −.0174 −.0201


.

3. Convergence

Theorem 3.1. Suppose that the functions um(x, t) obtained by using Haar

wavelet are the approximation of u(x, t), then we have the following error bound:

‖u(x, t)− um(x, t)‖E ≤
K√
3m

‖u(x, t)‖E =

(∫ 1

0

∫ 1

0

u2(x, t)dxdt

)1/2

. (3.1)

Proof. Suppose um(x, t) is the following approximation of u(x, t),

um(x, t) =

m−1∑
n=0

m−1∑
l=0

unlhn(x)hl(t).

Then we have:

u(x, t)− um(x, t) =

∞∑
n=m

∞∑
l=m

unlhn(x)hl(t) =

∞∑
n=2p+1

∞∑
l=2p+1

unlhn(x)hl(t).

The orthogonality of the sequence hi(x) on [0, 1) implies that

hl(.) = 2
j
2h(2j(.)− k). (3.2)
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Therefore

‖u(x, t)− um(x, t)‖2E =

∫ 1

0

∫ 1

0

(u(x, t)− um(x, t))2dxdt

= 2j
∞∑

n=2p+1

∞∑
l=2p+1

∞∑
n′=2p+1

∞∑
l′=2p+1

unlun′l′ (3.3)(∫ 1

0

hn(x)hn′(x)dx

)(∫ 1

0

hl(t)hl′(t)dt

)

= 2j
∞∑

n=2p+1

∞∑
l=2p+1

u2
nl, (3.4)

where unl =
〈
hn(x), 〈u(x, t), hl(t)〉

〉
.

According to Eq. (2.1) and the inner product definition, we have:〈
u(x, t), hl(t)

〉
=

∫ 1

0

u(x, t)hl(t)dt

= 2
j
2

(∫ k−0.5

2j

k−1

2j

u(x, t)dt−
∫ k

2j

k−0.5

2j

u(x, t)dt

)
. (3.5)

By using mean value theorem of integrals:

∃t1, t2 :
k − 1

2j
≤ t1 <

k − 0.5

2j
,

k − 0.5

2j
≤ t2 <

k

2j
, (3.6)

so that〈
u(x, t), hl(t)

〉
= 2

j
2

((k − 0.5

2j
− k − 1

2j
)
u(x, t1) −

( k
2j

− k − 0.5

2j
)
u(x, t2)

)
=

2
j
2

2j+1

(
u(x, t1) − u(x, t2)

)
(3.7)

unl =

〈
hn(x),

1

2
j
2 +1

(u(x, t1)− u(x, t2))

〉
(3.8)

=
1

2j+1

∫ 1

0

hn(x)(u(x, t1)− u(x, t2))dx

=
2
j
2

2
j
2 +1

(∫ k−0.5

2j

k−1

2j

u(x, t1)dx−
∫ k

2j

k−0.5

2j

u(x, t1)dx (3.9)

−
∫ k−0.5

2j

k−1

2j

u(x, t2)dx+

∫ k

2j

k−0.5

2j

u(x, t2)dx

)
.

(3.10)

By using mean value theorem of integrals again we have:

∃x1, x2, x3, x4 ::
k − 1

2j
≤ x1, x2 <

k − 0.5

2j
,

k − 0.5

2j
≤ x3, x4 <

k

2j
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unl =
1

2

{
(
k − 0.5

2j
− k − 1

2j
)u(x1, t1)− (

k

2j
− k − 0.5

2j
)u(x2, t1)−

(
k − 0.5

2j
− k − 1

2j
)u(x3, t2) + (

k

2j
− k − 0.5

2j
)u(x4, t2)

}
=

1

2j+2

{
(u(x1, t1)− u(x2, t1))− (u(x3, t2)− u(x4, t2))

}
(3.11)

u2
nl =

1

22j+4

{
(u(x1, t1)− u(x2, t1))− (u(x3, t2)− u(x4, t2))

}2

.

By using mean value theorem of derivatives:

∃ξ1, ξ2 : x1 ≤ ξ1 < x2, x3 ≤ ξ2 < x4

so that

u2
nl ≤ 1

22j+4

{
(x2 − x1)2

[
∂u(ξ1, t1)

∂x

]2

+ (x4 − x3)2

[
∂u(ξ1, t1)

∂x

]2

+2(x2 − x1)(x4 − x3)

∣∣∣∣∂u(ξ1, t1)

∂x

∣∣∣∣∣∣∣∣∂u(ξ2, t2)

∂x

∣∣∣∣}. (3.12)

We assume that ∂u(x,t)
∂x is continuous and bounded on (0, 1)× (0, 1), then

∃K > 0,∀x, t ∈ (0, 1)× (0, 1),

∣∣∣∣∂u(x, t)

∂x

∣∣∣∣ ≤ K. (3.13)

u2
nl ≤

(
1

22j+4

)
4K2

22j
=

4K2

24j+4
. (3.14)

By substituting Eq. (3.14) into Eq. (3.3), we have

||u(x, t)− um(x, t)||2E =

∞∑
j=p+1

( 2j+1−1∑
n=2j

2j+1−1∑
n=2j

u2
nl

)

≤
∞∑

j=p+1

( 2j+1−1∑
n=2j

2j+1−1∑
n=2j

4K2

24j+4

)

= 4K2
∞∑

j=p+1

( 2j+1−1∑
n=2j

2j+1−1∑
n=2j

1

24j+4

)

=
K2

3

1

4p+1
=

K2

3m2
. (3.15)

Therefore

||u(x, t)− um(x, t)||E ≤
K√
3m

. (3.16)
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From the Eq. (3.16), we can find that ‖u(x, t) − um(x, t)‖E → 0 when

m→∞. The larger the value of m, the more accurate the numerical solution.

with similar procedure, we have

‖ur+1(x, t)− umr+1(x, t)‖E ≤
K√
3m

. (3.17)

Eq. (3.17) implies that error between the exact and approximate solution

at the (r+1)th iteration is inversely proportional to the maximal level of reso-

lution. This implies that umr+1(x, t) converges to ur+1(x, t) as m → ∞. Since

ur+1(x, t)is obtained at (r + 1)th iteration of Picard technique then according

to the convergence analysis of Picard technique which states that ur+1(x, t)

converges to u(x, t) as r approaches to infinity. This suggests that solution

by Haar wavelet Picard technique, umr+1(x, t), converges to u(x, t) as m and r

approaches to infinity. �

4. Description of the proposed method

By applying the iteration method (Picard iteration) to Eq. (1.1), we get

∂αur+1

∂tα
− ∂3ur+1

∂x2∂t
= −(b+ 1)u2

r

∂ur
∂x

+ b
∂ur
∂x

∂2ur
∂x2

+ ur
∂3ur
∂x3

(4.1)

for 0 < α ≤ 1, b > 0, with the initial and boundary condition:

ur+1(x, 0) = g(x), ur+1(0, t) = y0(t), ur+1(1, t) = y1(t),

with t ≥ 0, 0 < x < 1.

By applying the Haar wavelet method, we suppose:

∂3ur+1

∂x2∂t
=

2M∑
i=1

2M∑
j=1

Cr+1
i,j hi(x)hi(t) = HT (x)Cr+1H(t). (4.2)

By applying the integral operator I2
x on Eq. (4.2):

∂ur+1

∂t
= (P 2

x )TCr+1H(t) + p(t)x+ q(t). (4.3)

By using the boundary condition and put x = 0, x = 1, we get:

x = 0 : q(t) =
∂y0

∂t

x = 1 : p(t) =
∂y1

∂t
− ∂y0

∂t
− (P 2

x (1))TCr+1H(t).

By applying the integral operator I1
t to Eq. (4.3) :

ur+1(x, t) = (P 2
x )TCr+1Pt + x

{
y1(t) − y0(t) − (P 2

x (1))TCr+1Pt

}
+ y0(t) + r(x),(4.2)

we use the initial condition and put t = 0 to get:

t = 0 : r(x) = g(x)− x
{
y1(0)− y0(0)

}
− y0(0).
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By derivating from Eq. (4.2), we get:

∂ur
∂x

= (Px)TCr+1Pt +
(
y1(t) − y0(t) −

(
P 2
x (1)

)T
Cr+1Pt

)
+
∂r(x)

∂x
, (4.2)

∂2u

∂x2
= HT (x)Cr+1Pt +

∂2r(x)

∂x2
. (4.3)

We estimate right side or nonlinear part of Eq. (4.1) by Haar wavelet:

S(x, t) = b
∂ur
∂x

∂2ur
∂x2

− (b+ 1)u2
r

∂2ur
∂x2

+ ur
∂u3

r

∂x3

=

2M∑
i=1

2M∑
j=1

mi,jhi(x)hj(t) (4.3)

= HT (x)MH(t),

where mi,j =
〈
hi(x), 〈S(x, t), hj(t)〉

〉
. By substituting Eqs. (4.4) and (4.2) for

Eq. (4.1), we get:

∂αur+1

∂tα
= HT (x)Cr+1H(t) +HT (x)MH(t). (4.3)

By applying fractional integral operator Iαt to Eq. (4.3) and using the initial

conditions, we obtain:

ur+1(x, t) = HT (x)Cr+1Pαt +HT (x)MPαt + g(x). (4.4)

From Eqs. (4.4) and (4.2), we get:

K(x, t) + (P
2
x )
T
C
r+1

pt − x
(

(P
2
x (1))

T
C
r+1

Pt
)
−HT (x)C

r+1
P
α
t −H

T
(x)MP

α
t = 0, (4.4)

where K(x, t) = x
{
y1(t)− y0(t)

}
+ y0(t) + r(x)− g(x).

In discrete form by putting collocation points, Eq(4) in matrix form can be

written as:(
(P 2
x )T − V 2,1,g(x)

)
Cr+1Pt −HTCr+1Pαt = HTMPαt −K, (4.5)

where H is the m × m Haar matrix, V 2,1,g(x) = g(x)I2
1H

T = g(x)(P 2(1))T ,

(g(x) = x) is the m × m fractional integration matrix for boundary value

problem, Pαx = IαxH
T and Pαt = Iαt H are the m × m matrices of fractional

integration of the Haar function. Also K = K(x(i), t(i)), i = 1, 2, . . . ,m matrix

determined at the collocation points.

By multiplying P−1 from right side and (HT )−1 from left side to Eq (4.5),

we get:

(HT )−1
(

(P 2)T − V 2,1,g(x)
)

︸ ︷︷ ︸
A

Cr+1 (4.6)

−Cr+1 Pαt (P−1)︸ ︷︷ ︸
−B

= (HT )−1
(
HTMPαt −K

)
(P−1)︸ ︷︷ ︸

C

,
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which it is the Sylvester equation (AX + XB = C). We solve Eq. (4.6) for

Cr+1, which is m ×m coefficient matrix, and substituting Cr+1 in Eqs. (4.4)

or (4.2), we get solution ur+1(x, t) at the collocation points. Suppose an initial

approximation u0(x, t), we get a linear fractional partial differential equation in

u1(x, t) by substituting r = 0 in Eq. (4.1), where is solved by above procedure.

Similarly for r = 1 we obtain u2(x, t) and so on.

4.1. Numerical Examples. In this section, we present Haar wavelet iteration

(HWI) method for the numerical solution of the Time Fractional Modified

Camassa-Holm and Time Fractional Modified Degasperis-Procesi equations,

and the proposed method has been compared with existing method ([16], [17],

[18]) to demonstrate its capability.

Example 4.1. By putting b = 2, equation (1.1) reduces to Time Fractional

Modified Camassa-Holm equation.

uαt − uxxt + 3u2ux = 2uxuxx + uuxxx (4.6)

with the initial and boundary conditions:

u(x, 0) = −2sech2(
x

2
), u(0, t) = −2sech2(−t), u(1, t) = −2sech2(

1

2
− t).

The corresponding integer order problems α = 1 has the exact solution

uexact = −2sech2(
x

2
− t).

Suppose u0(x, t) = −2sech2(x2 ) as an initial approximated and apply the

Haar wavelet with iteration technique.

The numerical results for different value resolution (m) and different iter-

ation with α = 1 at 5 iterations are shown in Figs 1, 3. Absolute error for

different iterations with α = 1 in (x(i), t(i)) are shown in Fig 2. To make a

comparison, the absolute error obtained by the present method has been com-

pared with the Adomian Decomposition Method (ADM) [17] and Variational

Iteration Method (VIM) [16], [18] in Table 1.

Example 4.2. By putting b = 3, equation (1.1) reduce to Time Fractional

Degasperis-Procesi equation.

uαt − uxxt + 4u2ux = 3uxuxx + uuxxx (4.7)

with the initial and boundary conditions:

u(x, 0) = −15

8
sech2(

x

2
)

u(0, t) = −15

8
sech2(−5t

4
)

u(1, t) = −15

8
sech2(

1

2
− 5t

4
).
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Figure 1. Exact solution and Haar wavelet iteration (HWI) solu-

tion for different value resolution in Example 4.1, which shows that

numerical solution is in very good coincide with exact solution by

increasing resolution (m).

The corresponding integer order problems α = 1 has exact solution

uexact = −15

8
sech2(

x

2
− 5t

4
).

Suppose u0(x, t) = − 15
8 sech

2(x2 ) as an initial approximated and apply the

Haar wavelet iteration technique.

The numerical results include absolute error and approximate solutions for

m = 64 at 3 iterations are shown in Fig 3. The approximate solutions obtained

by the present method has been compared with the Adomian Decomposition

Method (ADM) [17] and Variational Iteration Method (VIM) [16], [18] in Ta-

ble 2 and Table 3 shows the absolute errors of the approximate solutions for

different value of α at different points.
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Figure 2. Comparison of absolute error for different approxi-

mate solutions for α = 1, in Example 4.1.

α = 1

(x(i), t(j)) |u(1)
HWI

− uex| |u(3)
HWI

− uex| |u(5)
HWI

− uex| |u(2)
ADM

− uex|[17] |u(2)
V IM

− uex|[18]

( 1
128

, 1
128

) 4.46× 10−5 8.23× 10−5 1.71× 10−5 3.66× 10−4 3.66× 10−4

( 15
128

, 15
128

) 5.31× 10−3 1.26× 10−2 5.22× 10−3 8.17× 10−2 8.17× 10−2

( 31
128

, 31
128

) 3.52× 10−3 3.10× 10−2 1.29× 10−2 3.40× 10−1 3.40× 10−1

( 47
128

, 47
128

) 2.31× 10−2 3.20× 10−2 1.23× 10−2 7.48× 10−1 7.48× 10−1

( 63
128

, 63
128

) 7.34× 10−2 8.28× 10−3 9.84× 10−4 1.263× 101 1.263× 101

( 79
128

, 79
128

) 1.29× 10−1 3.46× 10−2 1.59× 10−2 1.836× 101 1.836× 101

( 95
128

, 95
128

) 1.60× 10−1 7.83× 10−2 2.82× 10−2 2.414× 101 2.414× 101

( 111
128

, 111
128

) 1.30× 10−1 8.94× 10−2 2.59× 10−2 2.822× 101 2.822× 101

( 127
128

, 127
128

) 5.73× 10−3 2.79× 10−2 2.22× 10−3 3.404× 101 3.404× 101

Table 1. Absolute error of approximate solution haar wavelet

with α = 1,m = 64 in Example 4.1, present method solution

compared with ADM method [17] and VIM method [16] , [18]

at various points of x and t.

5. Conclusion

In this work, we haveapplied the combination of Haar wavelet operational

matrices method and iteration technique for the solution of time fractional mod-

ified Camassa-Holm equation and time fractional modified Degasperis-Procesi
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Figure 3. Haar wavelet iteration solution for different itera-

tions with α = 1 in Example 4.1, which shows that numerical

solution is in very good coincide with exact solution by in-

creasing iterations.

equation. We transform nonlinear fractional partial differential equation to the

linear equation and Sylvester equation by using iteration technique. The ob-

tained results have been compared with exact solutions as well as with ADM

and VIM, which shows that numerical solution are in very good coincide with
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Figure 4. Haar wavelet iteration solution for different itera-

tions with α = 1, which shows that numerical solution is in

very good coincide with exact solution by increasing iterations.
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α = 1

(x(i), t(j)) |u(1)
HWI

− uex| |u(2)
HWI

− uex| |u(3)
HWI

− uex| |u(2)
ADM

− uex| |u(2)
V IM

− uex|

( 1
128

, 1
128

) 5.24× 10−5 2.29× 10−5 2.20× 10−5 1.24× 10−1 1.24× 10−1

( 15
128

, 15
128

) 5.95× 10−3 4.70× 10−3 2.95× 10−3 2.02× 10−2 2.02× 10−2

( 31
128

, 31
128

) 1.62× 10−3 1.25× 10−2 3.90× 10−3 3.10× 10−1 3.10× 10−1

( 47
128

, 47
128

) 3.40× 10−2 1.47× 10−2 2.91× 10−3 8.34× 10−1 8.34× 10−1

( 63
128

, 63
128

) 9.62× 10−2 1.68× 10−2 1.42× 10−2 1.496× 101 1.496× 101

( 79
128

, 79
128

) 1.59× 10−1 3.08× 10−2 2.03× 10−2 2.233× 101 2.233× 101

( 95
128

, 95
128

) 1.88× 10−1 5.39× 10−2 1.11× 10−2 2.979× 101 2.979× 101

( 111
128

, 111
128

) 1.47× 10−1 5.42× 10−2 7.90× 10−3 3.674× 101 3.674× 101

( 127
128

, 127
128

) 7.54× 10−3 1.63× 10−2 1.41× 10−3 4.267× 101 4.267× 101

Table 2. absolute error of approximate solution haar wavelet

in α = 1,m = 64 in Example 4.2, present method solution

compared with ADM method [17] and VIM method [16] , [18]

at various points of x and t.

(x(i), t(j)) |u(3)
HWI

− uex| |u(3)
HWI

− uex| |u(3)
HWI

− uex| |u(3)
HWI

− uex|
α = 0.3 α = 0.6 α = 0.9 α = 1

( 1
128

, 1
128

) 4.49× 10−5 4.24× 10−5 3.11× 10−5 2.20× 10−5

( 15
128

, 15
128

) 5.22× 10−3 4.60× 10−3 3.46× 10−3 2.95× 10−3

( 31
128

, 31
128

) 4.82× 10−3 3.89× 10−3 3.62× 10−3 3.90× 10−3

( 47
128

, 47
128

) 1.28× 10−2 1.13× 10−2 6.03× 10−3 2.91× 10−3

( 63
128

, 63
128

) 4.27× 10−2 3.59× 10−2 2.14× 10−2 1.42× 10−2

( 79
128

, 79
128

) 6.83× 10−2 5.53× 10−2 3.13× 10−2 2.03× 10−2

( 95
128

, 95
128

) 6.86× 10−2 5.17× 10−2 2.34× 10−2 1.11× 10−2

( 111
128

, 111
128

) 3.51× 10−2 2.19× 10−2 9.28× 10−4 7.90× 10−4

( 127
128

, 127
128

) 7.46× 10−3 4.22× 10−3 1.86× 10−4 1.41× 10−4

Table 3. Absolute error of (HWI) with α = 1,m = 64 in

Example 4.2. which shows that solutions by present method

convergence to the exact solution at α = 1, when α approach

to 1.

the exact solution by increasing iterations or level of resolution or both. The

obtained results demonstrate the accuracy, efficiency, and reliability of the pro-

posed method. Agreement between present numerical results obtained by Haar

Wavelet Iteration method with exact solutions appear very satisfactory through

illustrative results in Tables and Figures. However, Haar Wavelet Iteration

method provides more accurate and better solution in comparison to ADM
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and VIM. The present scheme is very simple, effective and appropriate for

obtaining numerical solutions of nonlinear partial differential equations.
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