On the WZ Factorization of the Real and Integer Matrices

E. Babolian, E. Golpar-Raboky

*Department of Computer Science, Kharazmi University, Tehran, Iran
Department of Mathematics, University of Qom, Qom, Iran

E-mail: babolian@khu.ac.ir
E-mail: g.raboky@qom.ac.ir

Abstract. The QIF (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using WZ factorization. The WZ factorization can be faster than the LU factorization because it performs the simultaneous evaluation of two columns or two rows. Here, we present a method for computing the real and integer WZ and ZW factorizations by using the null space generators of some special nested submatrices of a matrix A.

Keywords: Linear systems, Quadrant interlocking factorization, WZ factorization, ZW factorization, Null space generator.

1. Introduction

Linear systems arise frequently in scientific and engineering computing. Various serial and parallel algorithms have been introduced for their serial solution [9, 4]. The QIF (Quadrant Interlocking Factorization) algorithm, introduced by Evans and Hatzopoulos, is a numerical method for finding a solution for systems of the type $Ax = b$, where A is a nonsingular matrix of dimensions $n \times n$. The QIF method solves linear systems by partitioning the matrix A into quadrants and applying a series of interlocking factorizations to the submatrices.

Received 7 July 2018; Accepted 27 April 2019
©2022 Academic Center for Education, Culture and Research TMU
\[n \times n, \text{ } x \text{ is an unknown column vector, and } b \text{ is the independent term vector provided. The QIF method is based on the WZ factorization of the coefficient matrix } A. \text{ The main advantage of this factorization is that it presents a complexity order less than of the } LU \text{ decomposition due to the fact that it performs the simultaneous evaluation of two columns or two rows. A detailed description of this algorithm for real and complex matrices can be found in [4, 5, 10, 11].}\]

Golpar-Raboky and Mahdavi-Amiri presented new algorithms for computing the real and integer WZ and ZW matrix factorizations using ABS algorithms and the extended rank reduction process [6, 7, 8, 16]. Recently, some authors have considered simultaneous matrix decompositions [12, 13, 14].

The WZ factorization is used for solving Markovian linear systems [2] and network modeling [3], preconditioning of sparse matrices [18] and eigenvalue problems [15].

Let \(R \) and \(R^{m \times n} \) stand for the real number, and the set of all \(m \times n \) matrices over \(R \) and \(A^T \) denotes the transpose of \(A \). Let \(A = (a_1, \ldots, a_m)^T \in R^{m \times n} \). Assume that \(a_{k_1}^T, \ldots, a_{k_j}^T \) be the rows of \(A \) and \(H_1 \in R^{n \times n} \) be an arbitrary nonsingular matrix. For \(j = 1, \ldots, i \) update \(H_j \) by

\[
H_{j+1} = H_j - \frac{H_j a_{k_j} w_j^T H_j}{w_j^T H_j a_{k_j}},
\]

(1.1)

where \(w_j \in R^n \) such that \(w_j^T H_j a_{k_j} \neq 0 \). Then, we have

\[
a_{k_i}^T H_{j+1}^T = 0, \quad i = 1, \ldots, j,
\]

(1.2)

and the linear combination of the columns of \(H_{i+1}^T \) generates the null space of \(\{a_{k_1}, \ldots, a_{k_j}\} \) (see [1]).

Matrices \(H_i \) are generalizations of (oblique) projection matrices. They probably first appeared in a book by Wedderburn [19]. They have been named \textit{Ab-bafians} since the First International Conference on ABS methods (Luoyang, China, 1991) and this name will be used here.

\textbf{Notation:} Let \(A \in R^{n \times n} \). Here and subsequently \(J_n = \{j_1, \ldots, j_n\} \) denotes a permutation of \(\mathbb{I}_n = \{1, 2, \ldots, n\} \) and, for \(k = 1, \ldots, n \), \(J_k = \{j_1, \ldots, j_k\} \) denotes a subset of \(J_n \). Let

\[
A_{J_k} = (a_{i,j}), \quad i, j \in J_k.
\]

(1.3)

denotes a submatrix of \(A \), and

\[
J_1 \subset J_2 \subset \cdots \subset J_n,
\]

(1.4)
and \(\{A_{J_k}\}_{k=1}^n \) be a sequence of nested submatrices of \(A \). The following theorem describes a necessary and sufficient condition for nonsingularity \(A_{J_k}, \ k = 1, \cdots, n \).

Theorem 1.1. (Nested submatrices) Let \(A \in \mathbb{R}^{n \times n} \) and \(H_1 = I \). Then the nested submatrices \(A_{J_i}, \ i = 1, \cdots, n \), are nonsingular if and only if \(e_j^T H_i a_j \neq 0, \ i = 1, \cdots, n \).

Proof. Follow the lines of the proof for Theorem 6.5 in [1] by replacing \(i \) to \(j \).

From (1.1) and Theorem 1.1 we have the following result.

Theorem 1.2. Let \(A \in \mathbb{R}^{n \times n} \), \(H_1 = I \), and for \(i = 1, \cdots, n \), \(e_j^T A H_i e_j \neq 0 \). Then,

\[
H_{i+1} = H_i - \frac{H_i a_j e_j^T H_i}{e_j^T H_i a_j},
\]

is well defined.

The parameter choices in Theorem 1.2, induce a structure in the matrix \(H_i \), described by the following theorem.

Theorem 1.3. Let the conditions of Theorem 1.2 be satisfied and \(H_{i+1} \) defined by (1.5). Then, the following properties hold:

(a) The \(j \)th row of \(H_{i+1} \) is zero, for \(j \in J_i \).

(b) The \(j \)th column of \(H_{i+1} \) is equal to the \(j \)th column of \(H_1 \), for \(j \not\in J_i \).

Proof. See Theorem 6.3 in [1].

In this paper we present new algorithms for computing the \(WZ \) and \(ZW \) factorizations using null space of special submatrices of the matrix \(A \).

The structure of this paper is organized as follows. In Section 2, we discuss our proposed algorithm for the \(WZ \) factorization of a matrix \(A \) by using null space of special submatrices of \(A \). In Section 3, we propose a new algorithm for computing the \(WZ \) and \(ZW \) factorizations. In Section 4, we report a numerical experiment. We conclude in Section 5.

2. The WZ Factorization

The \(WZ \) factorization is a parallel method for solving dense linear systems of the form

\[
Ax = b,
\]

where \(A \) is a square \(n \times n \) matrix, and \(b \) is an \(n \)-vector.
Definition 2.1. Let \(s \) be a real number and denote by \(|s|\) (\([s]\)), the greatest (least) integer less (greater) than or equal to \(s \).

Definition 2.2. We say that a matrix \(A \) is factorized in the form \(WZ \) if

\[
A = WZ, \tag{2.2}
\]

where the matrices \(W \) and \(Z \) have the following structures:

\[
W = \begin{pmatrix}
* & 0 & \cdots & 0 & * \\
* & * & 0 & \cdots & * \\
* & * & * & \cdots & * \\
* & * & 0 & \cdots & * \\
* & 0 & \cdots & 0 & *
\end{pmatrix},
Z = \begin{pmatrix}
* & * & * & * \\
0 & * & * & 0 \\
: & 0 & * & : \\
0 & * & * & 0 \\
* & * & * & *
\end{pmatrix} \tag{2.3}
\]

where stars stand for possible nonzero entries.

The matrices \(W \) and \(Z \) have two zero opposite quadrants. Then, we refer to \(W \) and \(Z \) as the interlocking quadrant factors of \(A \). The factorization is unique if \(W \) has 1’s on the main diagonal and 0’s on the cross diagonal entries (see [17]).

Now, we give a characterization for the existence of the \(WZ \) factorization of \(A \).

Theorem 2.1. Let \(A \in \mathbb{R}^{n \times n} \) be a nonsingular matrix. \(A \) has quadrant interlocking factorization \(QIF, A=WZ \), if and only if for every \(k, 1 \leq k \leq s \), where \(s = \lfloor n/2 \rfloor \) if \(n \) is even and \(s = \lceil n/2 \rceil \) if \(n \) is odd, the \(2k \times 2k \) submatrix

\[
\Delta_k = \begin{pmatrix}
a_{1,1} & \cdots & a_{1,k} & a_{1,n-k+1} & \cdots & a_{1,n} \\
: & \cdots & : & \cdots & : & : \\
a_{k,1} & \cdots & a_{k,k} & a_{k,n-k+1} & \cdots & a_{k,n} \\
a_{n-k+1,1} & \cdots & a_{n-k+1,k} & a_{n-k+1,n-k+1} & \cdots & a_{n-k+1,n} \\
: & \cdots & : & \cdots & : & : \\
a_{n,1} & \cdots & a_{n,k} & a_{n,n-k+1} & \cdots & a_{n,n}
\end{pmatrix} \tag{2.4}
\]

of \(A \) is invertible. Moreover, the factorization is unique.

Proof. See Theorem 2 in [17]. \(\square \)

If \(A \in \mathbb{R}^{n \times n} \) is nonsingular, then the \(WZ \) factorization with pivoting can always be carried out. Whenever \(\Delta_k \) is nonsingular, it is always possible to interchange the rows \(k \leq i \leq (n-k+1) \). These row interchanges can be viewed in a matrix form as premultiplication by a permutation matrix. Thus, we have the following result.

Theorem 2.2. If \(A \in \mathbb{R}^{n \times n} \) is nonsingular, then the with pivoting \(WZ \) factorization can always be carried out, that is, a row permutation matrix \(P \) and the factors \(W \) and \(Z \) exist so that, \(PA = WZ \).
Proof. See [17]. □

Let $A \in \mathbb{R}^{n \times n}$ and there exists a WZ factorization without pivoting of A. Let, n be an even number. Here, we present a new algorithm for computing the WZ factorization of A using null space of the sequence submatrices

$$\Delta_1 \subset \Delta_2 \subset \cdots \subset \Delta_{n/2}. \quad (2.5)$$

For $k = 1, \cdots, s$, where $s = \frac{n}{2}$ consider Δ_k defined by (2.4). Let, the rows of H_k generate the null space of Δ_k expect the kth and the $(k+1)$th rows. Let $e_j \in \mathbb{R}^{2k}$ be the jth unit vector, then we have,

$$e_i^T \Delta_k H_k^T = 0, \quad i \neq k, k+1, \quad (2.6)$$

and

$$(e_k^T, e_{k+1}^T) \Delta_k H_k^T \neq 0. \quad (2.7)$$

Therefore, there exist $1 \leq j_1, j_2 \leq 2k$ such that,

$$\alpha_1 = e_{j_1}^T H_k \Delta_k^T e_k \neq 0, \quad \alpha_2 = e_{j_2}^T H_k \Delta_k^T e_{k+1} \neq 0. \quad (2.8)$$

Let $T_k = (t_1, \cdots, t_{2k}) = H_k^T e_{j_1}/\alpha_1 \in \mathbb{R}^{2k}$ and $Y_k = (y_1, \cdots, y_{2k}) = H_k^T e_{j_2}/\alpha_2 \in \mathbb{R}^{2k}$. Then, we have

$$\Delta_k T_k = (0_{k-1}, 0_1, 0_{n-2k})^T, \quad \Delta_k Y_k = (0_{k-1}, 0_1, 0_{n-2k})^T. \quad (2.9)$$

Now, let

$$\bar{z}_k = (t_1, \cdots, t_k, 0, \cdots, 0, t_{k+1}, \cdots, t_{2k})^T, \quad (2.10)$$

and

$$\bar{z}_{n-k+1} = (y_1, \cdots, y_k, 0, \cdots, 0, y_{k+1}, \cdots, y_{2k})^T, \quad (2.11)$$

then, we have

$$w_k = A\bar{z}_k = (0_{k-1}, 0_1, w_{k+1,k}, \cdots, w_{n-k,k}, 0, \cdots, 0)^T \quad (2.12)$$

and

$$w_{n-k+1} = A\bar{z}_{n-k+1} = (0_{k-1}, 0_1, w_{k+1,n-k+1}, \cdots, w_{n-k,n-k+1}, 1, 0, \cdots, 0)^T. \quad (2.13)$$
\[Z = (\bar{z}_1, \cdots, \bar{z}_n), \quad W = (w_1, \cdots, w_n), \quad (2.14) \]

then, we have,

\[AZ = W \Rightarrow A = WZ, \quad Z = \bar{Z}^{-1}. \]

Here, we are ready to present the \(WZ \) algorithm. Without loss of generality we assume that \(A \) is an even order matrix.

Algorithm 1. \(WZ \) algorithm

1. Let \(A^{(0)} = A, \quad k = 1, \quad s = n/2. \)
2. Compute \(P_k, \quad A^{(k)} = P_k A^{(k-1)} \) where, \(P_k \) is a permutation matrix and \(\Delta_k \) is nonsingular.
3. Compute \(H_k \), so that the rows of \(H_k \) present the null space of the rows of \(\Delta_k \) except the \(k \)th and \((k + 1)\)th rows.
4. Determine \(1 \leq j_1, j_2 \leq 2k \) such that,

\[\alpha_1 = e_{j_1}^T H_k \Lambda_k^T e_k \neq 0, \quad \alpha_2 = e_{j_2}^T H_k \Lambda_k^T e_{k+1} \neq 0. \quad (2.15) \]

5. Compute,

\[T_k = (t_1, \cdots, t_{2k}) = H_k^T e_{j_1}/\alpha_1 \quad \text{and} \quad Y_k = (y_1, \cdots, y_{2k}) = H_k^T e_{j_2}/\alpha_2. \]

6. Compute,

\[\bar{z}_k = (t_1, \cdots, t_k, 0, \cdots, 0, t_{k+1}, \cdots, t_{2k})^T, \quad (2.16) \]

and

\[\bar{z}_{n-k+1} = (y_1, \cdots, y_k, 0, \cdots, 0, y_{k+1}, \cdots, y_{2k})^T, \quad (2.17) \]

7. **If** \(k < s \) **then** \(k = k + 1 \) **and** **go to** (2).

8. Compute

\[PA = WZ, \]
where, \(P = P_s \cdots P_1, \bar{Z} = (\bar{z}_1, \cdots, \bar{z}_n), \ W = PA\bar{Z} \) and \(Z = \bar{Z}^{-1} \).

(9) Stop.

The integer WZ factorization of an integer matrix, can be calculated as the real case if it exists. Here, we present the conditions for existence of the integer WZ factorization of an integer matrix.

Definition 2.3. \(A \in \mathbb{Z}^{n \times n} \) is a unimodular matrix if and only if \(|\det(A)| = 1 \).

If \(A \) is unimodular, then \(A^{-1} \) is also unimodular.

Definition 2.4. We say that a matrix \(A \) is factorized in an integer WZ form if

\[
A = WZ, \tag{2.18}
\]

where the matrices \(W \) and \(Z \) are matrices with integer entries defined by (2.3).

According to Theorem 2.1, we have the following result.

Theorem 2.3. Let \(A \in \mathbb{Z}^{n \times n} \) and the submatrices \(\Delta_k \) defined by (2.4) be unimodular, then \(A \) has an integer WZ factorization.

For computing an integer WZ factorization (if there exits), in the \(k \)th step \(H_k \) generates the integer null space of \(\Delta_k \) except the \(k \)th and the \((k + 1)\)th rows. Furthermore, in (2.8) we choose two integer vectors \(j_1 \) and \(j_2 \) such that

\[
\alpha_1 = e_{j_1}^T H_k \Delta_k^T e_k = \gcd(H_k \Delta_k^T e_k), \alpha_2 = e_{j_2}^T H_k \Delta_k^T e_{k+1} = \gcd(H_k \Delta_k^T e_{k+1}), \tag{2.19}
\]

where, \(\gcd(x) \) is the greatest common divisor of entries of \(x \).

Definition 2.5. A matrix \(A \in \mathbb{Z}^{n \times n} \) is called totally unimodular if each square submatrix of \(A \) has determinant equal to 0, +1, or −1. In particular, each entry of a totally unimodular matrix is 0, +1, or −1.

Corollary 2.1. Every totally unimodular symmetric positive definite matrix has an integer WZ factorization.

3. The ZW Factorization

Definition 3.1. We say that a matrix \(A \) is factorized in the form ZW if

\[
A = ZW, \tag{3.1}
\]

where the matrices \(W \) and \(Z \) are defined as (2.3)

where the empty bullets stand for zero and the other bullets stand for possible nonzero entries.

The factorization is unique if \(Z \) has 1’s on the main diagonal and 0’s on the
cross diagonal.

Without loss of generality, suppose that \(n \) be an even number and \(s = \frac{n}{2} \).

Here, we present a new algorithm for computing the ZW factorization of \(A \) using null space of the sequence of submatrices

\[
\Lambda_1 \subset \Lambda_2 \subset \cdots \subset \Lambda_{n/2}
\]

where

\[
\Lambda_k = \begin{pmatrix} a_{s-k+1,s-k+1} & \cdots & a_{s-k+1,s+k} \\
\vdots & \ddots & \vdots \\
a_{s+k,s-k+1} & \cdots & a_{s+k,s+k} \end{pmatrix}_{2k,2k}.
\]

(3.3)

Theorem 3.1. Let \(A \in \mathbb{R}^{n \times n} \) be a nonsingular matrix. \(A \) has a ZW factorization, if and only if for every \(k, 1 \leq k \leq n/2 \), the submatrix \(\Lambda_k \) defined by (3.3) be invertible.

Proof. The proof follows the lines of the proof for Theorem 2 in [17] replacing \(\Delta \) by \(\Lambda \).

\(\square \)

Let \(\Lambda_k \) be nonsingular, for \(k = 1, \cdots, n/2 \). Let, the rows of \(H_k \) generates the null space of \(\Lambda_k \) expect the first and the last rows. Let \(e_i \in \mathbb{R}^{2k} \) be the \(i \)th unit vector (i.e. the \(i \)th element is 1, otherwise 0). Then, we have,

\[
e_i^T \Lambda_k H_k^T = 0, \quad i \neq 1, 2k, \quad (e_1^T, e_{2k}^T) \Lambda_k H_k^T \neq 0,
\]

(3.4)

then there exists \(1 \leq j_1, j_2 \leq 2k \) such that,

\[
\alpha_1 = e_{j_1}^T H_k^T e_1 \neq 0, \quad \alpha_2 = e_{j_2}^T H_k^T e_{2k} \neq 0.
\]

(3.5)

Let \(T_k = (t_1, \cdots, t_{2k}) = H_k^T e_{j_1}/\alpha_1 \) and \(Y_k = (y_1, \cdots, y_{2k}) = H_k^T e_{j_2}/\alpha_2 \).

Then, we have

\[
\Lambda_k t = (1, 0, \cdots 0)^T, \quad \Lambda_k y = (0, 0, \cdots 1)^T.
\]

(3.6)

Now, let

\[
\bar{w}_{\frac{n-k+1}{2}} = (0, \cdots, 0, t_1, \cdots, t_{2k}, 0, \cdots, 0)^T, \quad (n-2k)/2
\]

(3.7)

and

\[
\bar{w}_{\frac{n+k}{2}} = (0, \cdots, 0, y_1, \cdots, y_{2k}, 0, \cdots, 0)^T, \quad (n-2k)/2
\]

(3.8)
On the WZ Factorization of the Real and Integer Matrices

then, we have

\[
\begin{align*}
\frac{z^2_{n-2k+1}}{2} - k + 1 &= A \bar{w}_{n-2k+1} = \\
&= (z_1, \frac{z(n-2k)}{2}, \frac{z(n-2k)}{2} - k + 1, \ldots, \frac{z(n+2k)}{2}, \frac{z(n+2k)}{2} - k + 1, \ldots, z_{n-2k+1})^T
\end{align*}
\] (3.9)

and

\[
\begin{align*}
\frac{z^2_{n+k}}{2} + k &= A \bar{w}_{n+k} = \\
&= (z_1, \frac{z(n-2k)}{2} + k, \frac{z(n-2k)}{2} + k, \ldots, z_{n-k}, \frac{z(n-k)}{2})^T.
\end{align*}
\] (3.10)

\[
\begin{align*}
\bar{W} &= (\bar{w}_1, \cdots, \bar{w}_n), \ Z &= (z_1, \cdots, z_n),
\end{align*}
\]

then, we have,

\[A \bar{W} = Z \Rightarrow A = Z \bar{W}, \ W = \bar{W}^{-1}\]

Here, we are ready to present the ZW algorithm. Without loss of generality we assume that A is an even order matrix.

Algorithm 2. ZW algorithm

1. Let \(A^{(0)} = A, k = 1, s = n/2\).

2. Compute \(P_k, A^{(k)} = P_k A^{(k-1)}\) where, \(P_k\) is a permutation matrix and \(\Lambda_k\) is nonsingular.

3. Let the rows of \(H_k\) generate the null space of \(\Lambda_k\) expect the first and the last rows.

4. Determine \(1 \leq j_1, j_2 \leq 2k\) such that,

\[
\alpha_1 = e_{j_1}^T H_k \Lambda_k^T e_1 \neq 0, \quad \alpha_2 = e_{j_2}^T H_k \Lambda_k^T e_{2k} \neq 0.
\] (3.11)

5. Compute,

\[
T_k = (t_1, \cdots, t_{2k}) = H_k^T e_{j_1}/\alpha_1 \text{ and } Y_k = (y_1, \cdots, y_{2k}) = H_k^T e_{j_2}/\alpha_2.
\]

6. Compute,

\[
\bar{w}_{n-2k+1} = (0, \cdots, 0, t_1, \cdots, t_{2k}, 0, \cdots, 0)^T, \quad \frac{(n-2k)/2}{(n-2k)/2}, \quad \frac{(n-2k)/2}{(n-2k)/2}
\] (3.12)
and

\[\bar{w}_{2+k}^T = \left(0, \ldots, 0, y_1, \ldots, y_{2k}, 0, \ldots, 0 \right)^T \tag{3.13} \]

(7) If \(k < s \) then \(k = k + 1 \) and \textbf{go to} (2).

(8) Compute

\[PA = ZW, \]

where, \(P = P_s \cdots P_1 \), \(\bar{W} = (\bar{w}_1, \ldots, \bar{w}_n) \), \(Z = PA\bar{W} \) and \(W = \bar{W}^{-1} \).

(9) \textbf{Stop}.

We can also calculate the integer \(ZW \) factorization of an integer matrix \(A \). The existence conditions are the same as Theorem 2.3 by replacing \(\Delta \) by \(\Lambda \).

Theorem 3.2. Let \(A \in \mathbb{Z}^{n \times n} \) and the submatrices \(\Lambda_k \) be unimodular, then \(A \) has an integer \(ZW \) factorization.

For computing an integer \(ZW \) factorization (if there exits), in the \(k \)th step \(H_k \) generates the integer null space of \(\Lambda_k \) expect the first and the last rows. Furthermore, in (3.5) we choose two integer vectors \(j_1 \) and \(j_2 \) such that

\[\alpha_1 = e_{j_1}^T H_k \Lambda_k^T e_1 = gcd(H_k \Lambda_k^T e_1), \alpha_2 = e_{j_2}^T H_k \Lambda_k^T e_{2k} = gcd(H_k \Lambda_k^T e_{2k}). \tag{3.14} \]

Corollary 3.1. Every totally unimodular symmetric positive definite matrix has an integer \(ZW \) factorization.

4. **Examples**

In this section, we present some numerical illustrations of our proposed algorithms to compute the \(WZ \) and \(ZW \) factorizations of real and integer matrices.

Example 4.1. Consider the following matrix,

\[A = \begin{pmatrix} 5 & 4 & 1 & 1 \\ 4 & 5 & 1 & 1 \\ 1 & 1 & 4 & 2 \\ 1 & 1 & 2 & 4 \end{pmatrix}. \]
Upon an application of Algorithm 1 for computing the WZ factorization, we obtain the following results:

\[
W = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0.7895 & 1 & 0 & 0.0526 \\
0.1053 & 0 & 1 & 0.4737 \\
0 & 0 & 0 & 1
\end{pmatrix},
Z = \begin{pmatrix}
5 & 4 & 1 & 1 \\
0 & 1.7895 & 0.1053 & 0 \\
0 & 0.1053 & 2.9474 & 0 \\
1 & 1 & 2 & 4
\end{pmatrix}.
\]

Example 4.2. Consider the following matrix

\[
A = \begin{pmatrix}
1 & 3 & 1.5 & 2 & 2.5 & 2.5 \\
3 & 3 & 3.5 & 2.5 & 3 & 2.5 \\
1.5 & 3.5 & 1 & 2.5 & 2 & 2.5 \\
2 & 2.5 & 2.5 & 4 & 1.5 & 3 \\
2.5 & 3 & 2.5 & 1.5 & 2 & 2.5 \\
2.5 & 2.5 & 2.5 & 3 & 2.5 & 1
\end{pmatrix}
\]

By applying Algorithm 2 for computing the ZW factorization we have

\[
Z = \begin{pmatrix}
1 & 0 & 0.3219 & 1.5 & 0.5 & 0.6452 & -0.8439 \\
0 & 1 & 3.5 & 0.6250 & 1.6613 & 0 \\
0 & 0 & 1 & 0.6250 & 0 & 0 \\
0 & 0 & 2.5 & 1 & 0 & 0 \\
0 & 0.7055 & 2 & 0.3750 & 1 & 0 \\
-1.5774 & 0.3425 & 2.5000 & 0.7500 & 0.7419 & 1.0000
\end{pmatrix},
\]

and

\[
W = \begin{pmatrix}
-0.4855 & 0 & 0 & 0 & 0 & 0 \\
6.2826 & 8.1111 & 0 & 0 & 0 & 8.5331 \\
-0.4444 & -3.4444 & 1 & 0 & -1.8889 & -1.1111 \\
3.1111 & 11.1111 & 0 & 4 & 6.2222 & 5.7778 \\
-2.2100 & 0 & 0 & 0 & 3.4444 & -3.4644 \\
0 & 0 & 0 & 0 & 0 & -0.9075
\end{pmatrix}.
\]

Example 4.3. Consider the following integer real matrix

\[
A = \begin{pmatrix}
1 & 0 & -1 & 1 & -1 & -1 \\
0 & 2 & 0 & 3 & 1 & 1 \\
-1 & 0 & 5 & -1 & 7 & 2 \\
1 & 3 & -1 & 8 & 2 & 1 \\
-1 & 1 & 7 & 2 & 15 & 4 \\
-1 & 1 & 2 & 1 & 4 & 2
\end{pmatrix}.
\]

Upon an application of Algorithm 1 for computing the integer WZ factorization, we obtain the following results:
\[
W = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
-1 & -1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & -1 & 2 \\
-1 & -2 & 0 & 0 & 1 & 3 \\
-1 & 0 & 0 & 0 & 0 & 1
\end{bmatrix},
Z = \begin{bmatrix}
1 & 0 & -1 & 1 & -1 & -1 \\
0 & 1 & -1 & 1 & -2 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 1 & 0 \\
0 & 1 & 1 & 2 & 3 & 1
\end{bmatrix}.
\]

Example 4.4. Consider the following matrix

\[
A = \begin{bmatrix}
5 & 4 & -1 & 1 & -3 & -2 \\
4 & 7 & -1 & 1 & -4 & 0 \\
-1 & -1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & -1 & 0 \\
-3 & -4 & 1 & -1 & 3 & 1 \\
-2 & 0 & 1 & 0 & 1 & 3
\end{bmatrix}.
\]

By applying Algorithm 2 for computing the integer \(ZW\) factorization we have

\[
Z = \begin{bmatrix}
1 & 0 & -1 & 1 & -1 & -1 \\
0 & 1 & -1 & 1 & -2 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{bmatrix},
W = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
-1 & -1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & -1 & 0 \\
-1 & -2 & 0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}.
\]

5. Conclusion

Parallel implicit matrix elimination schemes for the solution of linear systems were introduced by Evans. In this paper we showed how to compute the real (integer) \(WZ\) and \(ZW\) factorizations by using the null space generators of particular submatrices of a given matrix \(A\).

Acknowledgments

The authors would like to thank the reviewers for their thoughtful comments and efforts towards improving our manuscript.

References