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Abstract. In this paper, we study the decomposition of semirings with

a semilattice additive reduct. For, we introduce the notion of principal

left k-radicals Λ(a) = {x ∈ S | a
l

−→∞ x} induced by the transitive

closure
l

−→∞ of the relation
l−→ which induce the equivalence relation λ.

Again non-transitivity of
l−→ yields an expanding family {

l
−→n} of binary

relations which associate subsets Λn(a) for all a ∈ S, which again induces

an equivalence relation λn. We also define λ(λn)-simple semirings, and

characterize the semirings which are distributive lattices of λ(λn)-simple

semirings.

Keywords: Principal left k-radical, Distributive lattice congruence, Com-
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1. Introduction

The notion of semirings was introduced by Vandiver [12]. Semiring is a

generalization of both an associative ring as well as of distributive lattices.

Since semiring is a (2, 2) algebra, it has many applications in different areas of
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48 T. Kumar Mondal

mathematics, idempotent analysis, physics, computer science etc. The under-

lying semirings in idempotent analysis, syntactic semirings, Max-plus algebra,

Kleene algebra are those whose additive reduct is a semilattice, i.e., idempotent

and commutative. On the other hand the structure of semirings with semilat-

tice additive reduct have been studied by Bhuniya and Mondal in [1, 2, 3, 4],

Mondal [9], Mondal and Hansda [10], Mondal and Bhuniya [11]. Distributive

lattice decomposition of such semirings is one of the most beautiful technique

in the study of structure of semirings. In [2], Bhuniya and Mondal gave the

description of the least distributive lattice congruence on a semiring in three

different ways, where different descriptions produced different types of simpler

structures. All these works are motivated by the idea of the semilattice decom-

positions of the semigroups through the least semilattice congruence given by

A.H. Clifford [6]. That has been an elegant technique to give the description

of the structure of different classes of semigroups. In our work we general-

ize the idea of semilattice decomposition of semigroups to distributive lattice

decomposition of semirings.

This paper is a continuation of our study on the structure of semirings in

SL+ [2]. Our main aim is to decompose the semirings with semilattice additive

reduct through the least distributive lattice congruence into simpler compo-

nents. The preliminaries and prerequisites are given in section 2, and state

some results from [2, 3]. In section 3, we introduce the notion of principal left

k-radicals Λ(a) = {x ∈ S | a
l

−→∞ x} induced by the transitive closure
l

−→∞

of the relation
l−→, give its some basic characteristics, define an equivalence

relation λ induced by the principal left k-radicals. Again non-transitivity of
l−→ leads to give an expanding family

l
−→n of binary relations which associate

subsets Λn(a) for all a ∈ S, which induces equivalence relation λn. We also

define λ(λn)-simplicity of a semiring , and characterize the semirings which are

distributive lattices of λ-simple semirings. Finally we give the characterization

of the semirings which are distributive lattices of λn-simple semirings.

2. Preliminaries

A semiring (S,+, ·) is an algebra with two binary operations + and · such

that both (S,+) and (S, ·) are semigroups and such that the following distribu-

tive laws hold: for x, y, z ∈ S,

x(y + z) = xy + xz and (x+ y)z = xz + yz.

Any distributive lattice D is a semiring (D,+, ·) such that both the additive

reduct (D,+) and the multiplicative reduct (D, ·) are semilattices together with

the absorptive law:

x+ x.y = x for all x, y ∈ S.
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Distributive Lattices of λ-simple Semirings 49

Thus the semiring is a generalization of both rings and distributive lattices. By

SL+ we denote the category of all semirings (S,+, ·) with a semilattice additive

reduct. Throughout this paper, unless otherwise stated, S is always a semiring

in SL+.

Let A be non-empty subset of a semiring S. Then the k-closure of A is

defined by A = {x ∈ S | x + a1 = a2, for some a1, a2 ∈ A}, and the k-

radical of A by
√
A = {x ∈ S | (∃ n ∈ N) xn ∈ A}. Then A ⊆

√
A by

definition, and A ⊆ A, since (S,+) is a semilattice. Again x+ a1 = a2 implies

x+a2 = x+x+a1 = x+a1 = a2. So, one can also write A = {x ∈ S | x+a = a

for some a ∈ A}. An ideal I of a semiring S is a k-ideal if I = I. A nonempty

subset A of S is called completely semiprime if for x ∈ S, x2 ∈ A implies x ∈ A.

It can easily be checked that k-ideal I is completely semiprime if and only if√
I = I.

An equivalence relation ρ on a semiring S is called a left congruence if for all

a, b, c ∈ S, aρb implies that (a+c)ρ(b+c) and caρcb. The right congruences are

defined dually. An equivalence relation ρ on S is called a congruence if it is both

a left and a right congruence on S. A congruence ρ on S is called a distributive

lattice congruence on S if the quotient semiring S/ρ is a distributive lattice. If

C is a class of semirings we refer to semirings in C as C-semirings. A semiring

S is called a distributive lattice of C-semirings if there exists a congruence ρ on

S such that S/ρ is a distributive lattice and each ρ-class is a semiring in C.

Lemma 2.1 ([3], 2.1). Let S be a semiring.

(a) For a, b ∈ S the following statements are equivalent:

(i) there are si, ti ∈ S such that b+ s1at1 = s2at2;

(ii) there are s, t ∈ S such that b+ sat = sat;

(iii) there is x ∈ S such that b+ xax = xax.

(b) If a, b, c ∈ S are such that b + xax = xax and c + yay = yay for some

x, y ∈ S, then there is z ∈ S such that b+ zaz = zaz = c+ zaz.

(c) If a, b, c ∈ S are such that c + xax = xax and c + yby = yby for some

x, y ∈ S, then there is z ∈ S such that c+ zaz = zaz and c+ zbz = zbz.

Lemma 2.2 ([3], 2.2). For a semiring S and a, b ∈ S the following statements

hold.

(1) SaS is a k-ideal of S.

(2)
√
SaS =

√
SaS.

(3) bm ∈
√
SaS for some m ∈ N⇔ bk ∈

√
SaS for all k ∈ N.

In [3], the authors studied the structure of the semirings in SL+, and during

this, the description of the least distributive lattice congruence η on a semiring

S was given, where −→∞=
⋃∞
n=1 −→n is the transitive closure of −→ and

η =−→∞ ∩(−→∞)−1[2]. In [2], for the second description of the least distribu-

tive lattice congruence on a semiring S, Bhuniya and Mondal introduced the
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set M(a), for each a ∈ S defined by

M(a) = {x ∈ S | a −→∞ x}.

There, as one of the most important basic characteristics of the set M(a), it

was shown that M(a) is the least completely semiprime k-ideal of S containing

a, and an equivalence relation on S was determined in respect of producing the

same principal completely semiprime k-ideal denoted byM, and was given by:

for a, b ∈ S,

aMb⇔M(a) = M(b).

Theorem 2.3 (3.6, [2]). Let S be a semiring. ThenM is the least distributive

lattice congruence on S.

Definition 2.4 (4.1, [2]). Let ρ be a binary relation on a semiring S. Then S

is said to be ρ-simple if ρ = S × S.

Thus a semiring S is M-simple if M = S × S. Again M being the least

distributive lattice congruence, if S is M-simple then there will be no other

distributive lattice congruence on S except the universal relation S×S. In the

following theorem characterization of such semirings was given, where we state

only four equivalent conditions.

Theorem 2.5 (4.2, [2]). The following conditions on a semiring S are equiv-

alent:

(1) ω = S × S is the only distributive lattice congruence on S;

(1) S is η-simple;

(1) S isM-simple;

(1) M(a) = S for all a ∈ S.

Definition 2.6 (4.3, [2]). A semiring S is said to be indecomposable if the

universal relation ω is the only distributive lattice congruence on S.

Theorem 2.7 (4.5, [2]). Every semiring S is a distributive lattice of indecom-

posable semirings.

For undefined concepts in semigroup theory we refer to [8], for undefined

concepts in semiring theory we refer to [7].

3. Principal left k-radicals and distributive lattices of λ-simple

semirings:

In [9], the author introduced the following relations on a semiring S : for

a, b ∈ S, a |l b if b ∈ Sa, a
l−→ b if a |l bn for some n ∈ N. In this paper

we define the following: in general,
l−→ is not transitive. Non-transitiveness

of
l−→ then produces a family of binary relations

l−→
n

for each n ∈ N. For

a, b ∈ S, a l−→
n+1

b if there exists x ∈ S such that a
l−→
n

x
l−→ b, n ∈ N and

a
l−→
∞
b if a

l−→
n

b for some n ∈ N.
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Lemma 3.1. Let S be a semiring.

(a) For a, b ∈ S the following statements are equivalent:

(1) there are si ∈ S such that b+ s1a = s2a;

(2) there are s ∈ S such that b+ sa = sa.

(b) If a, b, c ∈ S such that c+ xa = xa and d+ yb = yb for some x, y ∈ S, then
there is some z ∈ S such that c+ za = za and d+ zb = zb.

Proof. (a) (1)⇒ (2) holds for s = s1 + s2, since (S,+) is a semilattice. Other

implication is clear.

(b) z = x+ y serves our purpose. �

Following the ideas of Ćirić and Bogdanović[5], we introduce the following:

For every a ∈ S and n ∈ N

Λ(a) = {x ∈ S | a
l

−→∞ x}, Λn(a) = {x ∈ S | a
l

−→n x}.

For every a ∈ S, Λ(a) is called the principal left k-radical in S containing a.

Here we present some basic characteristics of these sets.

Lemma 3.2. Let S be a semiring and a, b, c ∈ S. Then

(1) Λ1(a) =
√
Sa.

(2) Λn(a) ⊆ Λn+1(a) ⊆
√
SΛn(a), n ∈ N.

(3) Λ(a) =
⋃
n∈N Λn(a).

Proof. (1) Let x ∈ Λ1(a). Then a
l

−→1, i.e. x ∈
√
Sa so that Λ1(a) ⊆

√
Sa. If

y ∈
√
Sa, then xn ∈ Sa for some n ∈ N. This implies a

l−→ x, i.e. x ∈ Λ1(a)

yielding
√
Sa ⊆ Λ1(a). Consequently, Λ1(a) =

√
Sa.

(2) Let x ∈ Λn(a). Then a
l
−→n x, and x

l−→ x together imply a
l

−→n+1 x.

This yields x ∈ Λn+1(a), whence Λn(a) ⊆ Λn+1(a).

For the second inclusion, let x ∈ Λn+1(a). Then a
l

−→n+1 x so that a
l
−→n

b
l−→ x for some b ∈ S. Now a

l
−→n b and b

l−→ x imply b ∈ Λn(a) and

x ∈
√
Sb so that x ∈

√
SΛn(a). Thus one gets Λn+1(a) ⊆

√
SΛn(a).

(3) The proof is straight forward. �

Now we introduce two equivalence relations λ and λn on S by: for a, b ∈ S,

aλb⇔ Λ(a) = Λ(b) and aλnb⇔ Λn(a) = Λn(b).

These equivalences are generalizations of the well-known Green’s relation L.

A semiring S is said to be λ(λn)-simple if λ(λn) = S × S. A semiring S is

called a distributive lattice(chains) of λ(λn)-simple semirings if there exists a
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congruence ρ on S such that S/ρ is a distributive lattice(chain) and each ρ-class

is a λ(λn)-simple semiring.

Lemma 3.3. Suppose S is a distributive lattice D of subsemirings Sα;α ∈ D.
(1) If a ∈ Sα, b ∈ Sβ , α, β ∈ D are such that a

l−→ b, then β ≤ α.

(2) If a, b ∈ Sα, α ∈ D, then a
l
−→n b in S implies that a

l
−→n b in Sα.

Proof. Let ρ be a distributive lattice congruence on S so that S is a distributive

lattice D of subsemirings Sα;α ∈ D.

(1) Now a
l−→ b implies bn + xa = xa for some n ∈ N, x ∈ S, by Lemma 3.1.

Then (a+ b)ρ(a+ xa+ bn) = (a+ xa)ρa, which gives α+ β = α, i.e, β ≤ α.

(2) There are xi(i = 1, 2, ..., n− 1) in S such that a
l−→ x1

l−→ x2
l−→ ...

l−→
xn−1

l−→ b. Let xi ∈ Sβi(i = 1, 2, ..., n − 1), β ∈ D. Then by (1) we get

α ≤ βn−1 ≤ ... ≤ β2 ≤ β1 ≤ α, and hence βi = α, i.e, xi ∈ Sα. Thus a
l
−→n b

in Sα. �

Here we characterize the semirings which are distributive lattices of λ-simple

semirings.

Theorem 3.4. The following conditions are equivalent on a semiring S:

(1) S is a distributive lattice of λ-simple subsemirings;

(2) for all a, b ∈ S, ab ∈ Λ(a);

(3) for every a ∈ S,Λ(a) is the least completely semiprime k-ideal of S

containing a;

(4) λ = η, the least distributive lattice congruence on S;

(5) for all a, b ∈ S, b ∈ SaS implies that b ∈ Λ(a);

(6) for all a, b ∈ S,Λ(ab) = Λ(a) ∩ Λ(b).

Proof. (1) ⇒ (2) Let S be a distributive lattice D of subsemirings Si; i ∈ D,

and let a, b ∈ S. Then ab, ba ∈ Si for some i ∈ D. Since Si is λ-simple,

Λ(ab) = Λ(ba) in Si, i.e. ba
l

−→∞ ab in S, and since a
l−→ ba in S, a

l
−→∞ ab

in S, i.e. ab ∈ Λ(a).

(2) ⇒ (3) Let x1, x2 ∈ Λ(a) and s ∈ S be such that s + x1 = x2. Then

a
l

−→∞ x2 = (s + x1)
l−→ s yields s ∈ Λ(a). Thus Λ(a) is a k-set. Let

x, y ∈ Λ(a). Then a
l
−→n x and a

l
−→n y for some n ∈ N. Then by Lemma

3.1, there exist m ∈ N and s, xi, yi(i = 1, 2, ..., n− 1) in S such that xm1 + sa =

sa, xmi+1 + sxi = sxi(i = 1, 2, ..., n − 2), xm + sxn−1 = sxn−1 and ym1 + sa =

sa, ymi+1 + syi = syi(i = 1, 2, ..., n− 1), ym + syn−1 = syn−1. Multiplying both

sides of ym + syn−1 = syn−1 by y on the right, we get ym+1 + syn−1y =

syn−1y. Now by rearranging the terms we have (x + y)m+1 = ym+1 + ux +

xv +
∑k
i=1 uixvi for some u, v, ui, vi ∈ S. Adding syn−1y on both sides one

gets (x+ y)m + syn−1y = syn−1y + ux+ xv +
∑k
i=1 uixvi. From this we write
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(x+y)m+3+(x+y)s(x+yn−1)y(x+y) = (x+y)s(x+yn−1)y(x+y)+(x+y)u(x+

yn−1)(x+y)+(x+y)(x+yn−1)v(b+c)+
∑k
i=1(x+y)ui(x+yn−1)vi(x+y). Now

for w = (x+y)s+y(x+y)+ (x+y)u+v(x+y)+
∑k
i=1(x+y)ui+

∑k
i=1 vi(x+

y) + x + y we obtain (x + y)m+2 + w(x + yn−1)w = w(x + yn−1)w, which

yields (x + yn−1)w
l−→ (x + y). By hypothesis, (x + yn−1)

l−→ (x + yn−1)w,

so that (x + yn−1)
l−→
∞

(x + y). Iterating this implication one gets (x +

a)
l−→
∞

(x+y1), (x+y1)
l−→
∞

(x+y2), ..., (x+yn−2)
l−→
∞

(x+yn−1), and so

(x+a)
l−→
∞

(x+y). Similarly a
l−→
∞
a and a

l−→
∞
x give (a+a)

l−→
∞

(a+x),

i.e. a
l−→
∞

(a + x). Then by transitivity of
l−→
∞

, we get a
l−→
∞

(x + y),

that is, x + y ∈ Λ(a). Let x ∈ Λ(a) and s ∈ S. Then a
l−→
∞
x and since

x
l−→ sx and x

l−→ xs, by (2), so xs, sx ∈ Λ(a). Let x ∈ S such that

x2 ∈ Λ(a). Then a
l−→
∞
x2

l−→ x implies x ∈ Λ(a). Thus Λ(a) is a completely

semiprime k-ideal of S containing a. Let I be a completely semiprime k-

ideal of S containing a. Then for x ∈ Λ1(a), one has xn + sa = sa for some

n ∈ N, so that xn+1 + sax = sax ∈ I, which implies x ∈
√
I = I, since I is

completely semiprime. Therefore Λ1(a) ⊆ I. Assume that Λn(a) ⊆ I. Then

SΛn(a) ⊆ SI ⊆ I, so Λn+1(a) =
√
SΛn(a) ⊆

√
I = I. Hence by principle

of mathematical induction Λ(a) =
⋃
n∈N Λn(a) ⊆ I. Hence Λ(a) is the least

completely semiprime k-ideal of S.

(3) ⇒ (4) Since Λ(a) is the least completely semiprime k-ideal of S, Λ(a) =

M(a), and so λ = η.

(4)⇒ (1) Follows from Theorems 2.5 and 2.7.

(1) ⇒ (5) Let S be a distributive lattice D = S/ρ of λ-simple semirings

Lα = aρ, α ∈ D, a ∈ S. Suppose a, b ∈ S be such that b ∈ SaS. Then

b + sas = sas for some s ∈ S, by Lemma 2.1. Now sasρs2aρsa implies that

sas, sa ∈ Lα for some α ∈ D. Since Lα is λ-simple, Λ(sas) = Λ(sa). Then

sa
l

−→∞ sas, and so there is n ∈ N such that sa
l
−→n sas. Then by Lemma

3.1, there are m ∈ N and x, xi, yi in S such that xm1 + xsa = xsa, xmi+1 + xxi =

xxi(i = 1, 2, ..., n− 2), (sas)m + xxn−1 = xxn−1. Now bm + (sas)m = (sas)m.

Adding both sides by xxn−1, one gets bm+((sas)m)+xxn−1) = (sas)m+xxn−1.

This implies that bm + xxn−1 = xxn−1, and so xn−1
l−→ b. Similarly from

the remaining equalities we have xn−2
l−→ xn−1, xn−3

l−→ xn−2, ..., x1
l−→

x2, a
l−→ x1. From these one gets a

l−→
∞
b. Thus b ∈ Λ(a).

(5) ⇒ (2) For a, b ∈ S, (ab)2 ∈ SaS implies that (ab)2 ∈ Λ(a), that is,

a
l−→
∞

(ab)2. Also (ab)2
l−→ ab implies that a

l−→
∞
ab. Thus ab ∈ Λ(a).

(2)⇒ (6) Let x ∈ Λ(ab). Then ab
l−→
∞
x so that ab

l−→
n

x for some n ∈ N.

Also there are m ∈ N and x, xi, s in S such that xm1 + sab = sab, xmi+1 + sxi =

sxi(i = 1, 2, ..., n − 2), xm + sxn−1 = sxn−1. Now sab ∈ Λ(sa) implies that

sa
l−→
k

sab for some n ∈ N. Again, there are r ∈ N and yi, u in S such that
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yr1+usa = usa, yri+1+uyi = uyi(i = 1, 2, ..., k−2), (sab)r+uyk−1 = uyk−1. Now

one has xmr1 + (sab)r = (sab)r. From this one gets xmr1 +uyk−1 = uyk−1. Thus

we have yk−1
l−→ x1. Also a

l−→ y1
l−→ y2...

l−→ yk−1 and x1
l−→ x2...

l−→
xn−1 −→ x. By transitivity of

l−→
∞
, a

l−→
∞
x, that is, x ∈ Λ(a). This yields

Λ(ab) ⊆ Λ(a). Also Λ(ab) ⊆ Λ(b) is clear. Thus Λ(ab) ⊆ Λ(a) ∩ Λ(b). The

opposite inclusion is easy to check. Consequently, Λ(ab) = Λ(a) ∩ Λ(b).

(2)⇒ (6) Follows easily since Λ(ab) ⊆ Λ(a). �

Next, in the following two lemmas we find the conditions which make the

relation
l−→
n

transitive on S that plays a crucial role in characterizing the

semirings which are distributive lattices of λn-simple semirings and is presented

in Theorem 3.7.

Lemma 3.5. Let S be a semiring and n ∈ N such that Λn(a) ⊆ Λn(a2). Then
l−→
n

is transitive on S.

Proof. Let a
l−→
n+1

b. Then there is x ∈ S such that a
l−→ x

l−→
n

b, and so

repeated application of the hypothesis one can find that x2
r l−→

n

b for every

r ∈ N. Also there exist k ∈ N and s ∈ S such that xk + sa = sa, by Lemma

3.1. Let y ∈ S such that x2
r −→ y −→n−1 b, if n ≥ 2, and y = b if n = 1.

The there are m ∈ N and t ∈ S such that ym + tx2
r

= tx2
r

(assuming 2r > k),

i.e, ym + ua = ua for u = ts. Hence a
l−→ y, which implies a

l−→
n

b, i.e,
l−→
n+1

⊆ l−→
n

, and so
l−→
n

=
l−→
n+1

=
l

−→∞. Thus
l−→
n

is transitive. �

Lemma 3.6. Let n ∈ N. Then the following are equivalent on a semiring S:

(1) for all a ∈ S, aλna2;
(2) for all a, b ∈ S, a l−→

n

b⇒ a2
l−→
n

b.

Proof. (1)⇒ (2) Trivial.

(2) ⇒ (1) Let x ∈ Λn(a). So a
l−→
n

x, and this implies a2
l−→
n

x, i.e.

x ∈ Λ(a2). Thus Λn(a) ⊆ Λn(a2). Conversely, let y ∈ Λn(a2). So a2
l−→
n

y.

Then by a
l−→
n

a2 and Lemma 3.5, we get a
l−→
n

y, i.e. y ∈ Λn(a). Thus

aλna
2. �

Theorem 3.7. Let n ∈ N. Then the following conditions are equivalent on a

semiring S:

(1) S is a distributive lattice of λn-simple subsemirings;

(2) for all a, b ∈ S, aλna2 and a
l−→
n

ab;

(3) for every a ∈ S,Λn(a) is the least completely semiprime k-ideal of S

containing a;

(4) λn = η, the least distributive lattice congruence on S.
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Proof. (1) ⇒ (2) Let S be a distributive lattice D of λn-simple subsemirings

Si; i ∈ D. Assume a, b ∈ S such that a ∈ Si, b ∈ Sj ; i, j ∈ D. Then a, a2 ∈ Si
implies aλna

2 in Si, since Si is λn-simple, i.e. aλna
2 in S. Also ab, ba ∈ Sij ,

so ba
l−→
n

ab in Sij , by Lemma 3.3. Now a
l−→ ba and ba

l−→
n

ab yield

a
l−→
n

ab, by Lemma 3.5.

(2)⇒ (3) By Lemmas 3.5 and 3.6,
l−→
n

is transitive on S and so Λn(a) = Λ(a),

which is the least completely semiprime k-ideal of S containing a, by Theorem

3.4.

(3)⇒ (4) Since Λn(a) is the least completely semiprime k-ideal of S, Λn(a) =

Σ(a) and so λn = η.

(4)⇒ (1) Follows from Theorems 2.5 and 2.7. �
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