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1. Background and Motivations

We first note that a part of this paper is a review of some known results.
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We now recall some results obtained in two different and independent direc-
tions and recall a concept in combinatorics about higher derivatives of func-
tions.

1.1. The first direction. In [18, p. 1127 and 1131], it was obtained that
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In the preprint [27] and its formally published version [10], the above two
identities were generalized inductively and recursively by the following eight
identities: (
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where

λk,m = (−1)k(m− 1)!S(k + 1,m), µk,m = (−1)m−1(m− 1)!S(k + 1,m),

ak,m−1 = (−1)m
2+1Mk−m+1(k,m), bk,m−1 = (−1)k−mak,m−1,
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for k ≥ m ≥ 1 denote the Stirling numbers of the second kind. In [10, Re-
mark 5.1], it was pointed out that the four functions
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In [10, Remark 5.2], it was concluded that
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All of the above results in [10, 27] were established by induction.
In [78, Theorems 3.1 and 3.2], by the Faà di Bruno formula and combinatorial

techniques, the above identities in [10, 27] were generalized and unified as
follows: For α, λ ∈ R and n ∈ N, we have(
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where s(n, k) for n ≥ k ≥ 1 denote the Stirling numbers of the first kind.
In [9, Theorem 2.1], the above identities (1.1) and (1.2) were inductively

proved, without using the Faà di Bruno formula and related techniques, once
again and were rewritten as follows: For real constants λ ̸= 0 and α ̸= 0 and
for k ∈ N, when λ > 0 and t ̸= − lnλ

α or when λ < 0 and t ∈ R, we have
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In the papers [1, 72], there are some new results on higher derivatives of the
function 1

ex−1 .

1.2. The second direction. In [13, 14], it was obtained inductively and re-
cursively that

(1) the function F (t) = 1
u−et is a solution of the nonlinear differential
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where u ∈ C \ {1} and n ∈ N;



Viewing some ordinary differential equations from · · · 81
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where Hn(x|u) for n ≥ 0 are called the Frobenius–Euler polynomials
which can be generated by
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Influenced by the papers [13, 14], the authors in [11] derived inductively and
recursively several formulas for the Bernoulli polynomials of the rth order(
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In [70, Theorem 2.1], it was procured inductively and recursively that the
function F (t) = 1
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By virtue of this, as did in [11], the authors of [70] presented several formulas
for the Euler numbers and polynomials of the rth order E
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n (x)
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In [12], it was acquired inductively and recursively that the function F (t) =
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In [17], it was procured inductively and recursively that
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Hereafter, the authors in [17] gave some new identities involving degenerate
Euler numbers and polynomials.

For x ∈ R, let

⟨x⟩n =

{
x(x− 1) · · · (x− n+ 1), n ≥ 1

1, n = 0

denotes the falling factorial of x. In [7, Theorem 2.1] and its formally pub-
lished version [15, Theorem 2.1], it was presented inductively and recursively,
among other things, that the function F (t) = (1+t)x

2+t is a solution of the linear
differential equations
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In [16], it was demonstrated inductively and recursively that
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Hereafter, the authors gave two identities for the so-called Changhee polyno-
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1.3. Derivative polynomials. Suppose f is a function whose derivative is a
polynomial in f , that is, f ′(x) = P (f(x)) for some polynomial P . Then all the
higher order derivatives of f are also polynomials in f , so we have a sequence
of polynomials Pn defined by f (n)(x) = Pn(f(x)) for n ≥ 0. As usual, we call
Pn(u) the derivative polynomials of f . For more information and results on
derivative polynomials, please refer to [1, 2, 3, 4, 6, 43, 77] and closely related
references therein.

Now we more accurately introduce a new notion below. If there exists a
sequence of polynomials Pn(u) =

∑n
k=0 aku

k for ak ∈ C and a sequence of
functions hn,k(x) for n, k ≥ 0 such that f (n)(x) =

∑n+q
k=0 akhn,k(x)f

k(x) for
n, q ≥ 0, then we call Pn+q(u) the generalized derivative polynomials of f(x)
with respect to hn,k(x).

2. Alternative Viewpoints and Derivative Polynomials

Now we are in a position to discuss the above conclusions from alternative
viewpoints and (generalized) derivative polynomials.

2.1. Almost all the above linear or nonlinear ordinary differential equations
and their solutions mentioned in last section can be alternatively regarded as
problems of (generalized) derivative polynomials.

2.2. Taking λ = −1 and α = 1 in (1.3) and simplifying yield
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Comparing this with (1.12) reveals that the coefficients an,k in (1.13) is just
equal to (k − 1)!S(n+ 1, k). In other words,
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We can also say that generalized derivative polynomials of the function 1
et+1 is

Pk+1(x) = (−1)k
k+1∑
m=1

(−1)m−1(m− 1)!S(k + 1,m)xm

with respect to hk,m(t) ≡ 1 for k ≥ 1 and 1 ≤ m ≤ k + 1. It is much straight-
forward and simple to see that the derivative polynomials of the function 1

t+c

is Pn(x) = (−1)nn!xn+1. Consequently, we find an alternative viewpoint to
examine the results in [16].
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2.3. By Leibniz’s theorem for differentiation of a product, we obtain
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2.4. In combinatorial analysis, the Faà di Bruno formula plays an important
role and can be described in terms of the Bell polynomials of the second kind
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(1− λ)(1 + λt)1/λ−k, . . . ,
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=

n∑
k=0

[
k∑

ℓ=0

(−1)ℓ
(
k

ℓ

) n−1∏
q=0

(ℓ− qλ)

]
(1 + λt)k/λ−n[

(1 + λt)1/λ ± 1
]k+1

(2.3)
for n ≥ 0. This means that the functions 1

(1+λt)1/λ±1
have the same generalized

derivative polynomials

Pn+1(u) =

n+1∑
k=1

[
k−1∑
ℓ=0

(−1)ℓ
(
k − 1

ℓ

) n−1∏
q=0

(ℓ− qλ)

]
uk
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with respect to hn,k(t) = (1 + λt)(k−1)/λ−n for n ≥ 0 and 1 ≤ k ≤ n+ 1.
By the way, the form of the equation (2.3) is different from the ones in (1.8)

and (1.10). The coefficients in the brackets on the right-hand side of the equa-
tion (2.3) are more nice, more explicit, easier to compute than the coefficients
ai(n, λ) defined by (1.9) in (1.8) and (1.10).

2.5. In [22, 28], it was obtained that[
1

ln(1 + t)

](m)

=
1

(1 + t)m

m∑
i=0

(−1)ii!
s(m, i)

[ln(1 + t)]i+1
, m ≥ 0

and (
1

lnx

)(n)

=
(−1)n

xn

n+1∑
i=2

an,i
(lnx)i

, n ∈ N,

where an,2 = (n− 1)! and

an,i = (i− 1)!(n− 1)!

n−1∑
ℓ1=1

1

ℓ1

ℓ1−1∑
ℓ2=1

1

ℓ2
· · ·

ℓi−4−1∑
ℓi−3=1

1

ℓi−3

ℓi−3−1∑
ℓi−2=1

1

ℓi−2

for n+ 1 ≥ i ≥ 3. Comparing this with (1.7) and rearranging lead to

Hn−1,i−1 =

n−1∑
ℓ1=1

1

ℓ1

ℓ1−1∑
ℓ2=1

1

ℓ2
· · ·

ℓi−4−1∑
ℓi−3=1

1

ℓi−3

ℓi−3−1∑
ℓi−2=1

1

ℓi−2
= (−1)n+i s(n, i)

(n− 1)!

for 3 ≤ i ≤ n. This connects (1.7) with the Stirling numbers of the first kind
s(n, i) and generalized derivative polynomials: generalized derivative polyno-
mials of 1

ln(1+t) is

Pm+1(u) =

m+1∑
i=1

(−1)i−1(i− 1)!s(m, i− 1)ui

with respect to hm,i ≡ 1
(1+t)m for m ≥ 0. Hence, we are viewing the paper [12]

from a different angle.

2.6. Letting λ = −1 and α = 1 in (1.4) results in(
1

et + 1

)k

=
1

(k − 1)!

k∑
m=1

(−1)m+ks(k,m)
dm−1

d tm−1

(
1

et + 1

)
. (2.4)

Comparing this with (1.6) gives

s(n, k + 1) = (−1)n+k+1 n!

(k + 1)!

∑
∑k+1

q=1 ℓq=n

k+1∏
q=1

1

ℓq
, n ∈ N. (2.5)

As a result, Theorem 2.1 in [70] can be simplified as (2.4) and has something
to do with the Stirling numbers of the first kind s(n, k).
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2.7. Setting λ = 1
u and α = 1 in (1.4) produces(

1

u− et

)k

=
(−1)k−1

(k − 1)!

1

uk−1

k−1∑
m=0

(−1)ms(k,m+ 1)
dm

d tm

(
1

u− et

)
for k ∈ N. Comparing this with (1.5) recovers the formula (2.5) which is
an alternative expression for the Stirling numbers of the first kind s(n, k).
Therefore, all the above-mentioned results in [13, 14] can be restated simply in
terms of the Stirling numbers of the first kind s(n, k).

2.8. In [9, 10, 78], some formulas for computing the Bernoulli numbers, the
Euler polynomials, the Apostol–Bernoulli numbers, the Eulerian polynomials,
and the Fubini numbers in terms of the Stirling numbers of the second kind
were established. These formulas are more concise, simpler, more meaningful
than those in [11, 12, 13, 14, 16, 70], as showed above. Due to limitation on
the length of this paper, we do not elaborate in further details here.

2.9. In [25, 43, 46, 62, 68, 72, 77], there are more information and new con-
clusions about (generalized) derivative polynomials, explicit formulas for the
Bernoulli numbers and polynomials, for the Euler numbers and polynomials,
for higher derivatives of some elementary functions, properties of the functions

±1
e±t−1 , and the like. Due to limitation on the length of this paper, we do not
elaborate in further details yet.

2.10. It is common knowledge that mathematicians should try to represent,
explain, or interpret a new mathematical quantities in terms of some known and
popular quantities in mathematics. Once a new mathematical quantity were
established connections or relations with some famous or important quantities,
it would be more meaningful and significant in mathematics.

3. Remarks

Finally we would like to give several remarks.

Remark 3.1. From the derivation of the equation (2.3), we can conclude that

Bn,k

(
1, 1− λ, (1− λ)(1− 2λ), . . . ,

n−k∏
ℓ=0

(1− ℓλ)

)

=
(−1)k

k!

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

) n−1∏
q=0

(ℓ− qλ) (3.1)

for λ ∈ C and n ≥ k ≥ 0. This formula can be used to derive many known
and new special values of the Bell polynomials of the second kind Bn,k such as,
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when taking λ = 0,−1, 2, 1
2 ,−2,− 1

2 in (3.1) respectively,

Bn,k(1, 1, 1, . . . , 1) =
(−1)k

k!

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
ℓn = S(n, k), (3.2)

Bn,k(1!, 2!, 3!, . . . , (n− k + 1)!) =
(−1)k

k!

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

) n−1∏
q=0

(ℓ+ q)

=

(
n

k

)(
n− 1

k − 1

)
(n− k)!

= L(n, k),

(3.3)

Bn,k((−1)!!, 1!!, 3!!, . . . , (2(n− k)− 1)!!) =
(−1)k

k!

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

) n−1∏
q=0

(ℓ− 2q),

(3.4)

Bn,k

(
1,

1

2
, 0, . . . , 0

)
=

(−1)k

k!

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

) n−1∏
q=0

(
ℓ− q

2

)

=
(n− k)!

4n−k

(
n

k

)(
k

n− k

)
,

(3.5)

Bn,k(1!!, 3!!, 5!!, . . . , (2(n− k) + 1)!!) =
(−1)k

k!

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

) n−1∏
q=0

(ℓ+ 2q),

(3.6)

and

Bn,k

(
1,

3

2
, 3,

15

2
. . . ,

(n− k + 2)!

2n−k+1

)
=

(−1)k

k!

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

) n−1∏
q=0

(
ℓ+

q

2

)
(3.7)

for n ≥ k ≥ 0, where L(n, k) for n ≥ k ≥ 0 denote the Lah numbers. The
identities (3.2) and (3.3) can be found in [5, p. 135]. The identity (3.3) can also
be found in [26, Theorem 1]. The identity (3.4) recovers the main results [62,
Theorems 1 and 2]. By virtue of the formula (2.2), the identity (3.5) is a special
case of

Bn,k(x, 1, 0, . . . , 0) =
(n− k)!

2n−k

(
n

k

)(
k

n− k

)
x2k−n

which was established alternatively in [46, Theorem 4.1], [62, Eq. (2.8)], and [68,
Section 3]. The identities (3.6) and (3.7) are, to the best of our knowledge, new.

The formula (3.1) has an equivalence

Bn,k(⟨α⟩1, ⟨α⟩2, . . . , ⟨α⟩n−k+1) =
(−1)k

k!

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
⟨αℓ⟩n, α ∈ C

which was presented in [58, Theorems 2.1 and 4.1]. The identity (3.1) has been
cited and applied in the papers [38, 40, 41, 47, 50, 53, 57, 58].
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In recent years, there have been some literature such as [8, 19, 20, 21, 30, 32,
44, 45, 50, 54, 59, 60, 62, 63, 71, 73, 74, 75, 76] devoting to deep and intrinsic
investigations and extensive applications of the Bell polynomials of the second
kind Bn,k(x1, . . . , xn−k+1).

Remark 3.2. By the way, the formulas (3.4) and (3.5) in [28, p. 325, Corol-
lary 3.1] should be slightly corrected as[

x

ln(1 + x)

](i)
=

(−1)i

(1 + x)i

i+1∑
k=2

xai,k − i(1 + x)ai−1,k

[ln(1 + x)]k
, i ≥ 2,

[
x

ln(1 + x)

](i)
=

1

(1 + x)i

i∑
k=1

(−1)kk![xs(i, k) + i(1 + x)s(i− 1, k)]

[ln(1 + x)]k+1
, i ≥ 2,

or[
x

ln(1 + x)

](i)
=

1

(1 + x)i

i∑
k=0

(−1)kk![xs(i, k) + i(1 + x)s(i− 1, k)]

[ln(1 + x)]k+1
, i ≥ 1,

where an,2 = (n− 1)! for n ∈ N,

an,i = (i− 1)!(n− 1)!

n−1∑
ℓ1=1

1

ℓ1

ℓ1−1∑
ℓ2=1

1

ℓ2
· · ·

ℓi−4−1∑
ℓi−3=1

1

ℓi−3

ℓi−3−1∑
ℓi−2=1

1

ℓi−2

for n+ 1 ≥ i ≥ 3, and

an,i = (−1)n+i−1(i− 1)!s(n, i− 1)

for 2 ≤ i ≤ n+ 1.

Remark 3.3. This paper has two preprints [49, 50] and is the first one in a
series of articles including [9, 10, 23, 24, 29, 31, 33, 34, 35, 36, 37, 38, 39, 42,
45, 48, 51, 52, 53, 55, 56, 57, 61, 64, 65, 66, 67, 69, 79].
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