Recognition of $L_{2}(q)$ by the Main Supergraph

\author{
Seyed Sadegh Salehi Amiri ${ }^{a}$, Alireza Khalili Asboei ${ }^{b, *}$
 ${ }^{a}$ Department of Mathematics, Babol Branch, Islamic Azad University, Babol, Iran.
 ${ }^{b}$ Department of Mathematics, Farhangian University, Tehran, Iran.
 ```
E-mail: salehisss@baboliau.ac.ir
 E-mail: a.khalili@cfu.ac.ir

```
}

\begin{abstract}
Let \(G\) be a finite group. The main supergraph \(\mathcal{S}(G)\) is a graph with vertex set \(G\) in which two vertices \(x\) and \(y\) are adjacent if and only if \(o(x) \mid o(y)\) or \(o(y) \mid o(x)\). In this paper, we will show that \(G \cong L_{2}(q)\) if and only if \(\mathcal{S}(G) \cong \mathcal{S}\left(L_{2}(q)\right)\), where \(q\) is a prime power. This work implies that there is not a solvable group that has the same order type as the simple group \(L_{2}(q)\).
\end{abstract}

Keywords: Graph, Main supergraph, Thompson's problem.

2010 Mathematics subject classification: 20D08, 05C25.

\section*{1. Introduction}

Let \(G\) be a finite group and \(x \in G\). The order of \(x\) is denoted by \(o(x)\). The set of all element orders of \(G\) is denoted by \(\pi_{e}(G)\) and the set of all prime factors of \(|G|\) is denoted by \(\pi(G)\). It is clear that the set \(\pi_{e}(G)\) is closed and partially ordered by divisibility, and hence it is uniquely determined by \(\mu(G)\), the subset of its maximal elements. We set \(M_{i}=M_{i}(G)=\mid\{g \in G \mid\) the order of \(g\) is \(i\} \mid\).

We define the graph \(\mathcal{S}(G)\) with the vertex set \(G\) such that two vertices \(x\) and \(y\) are adjacent if and only if \(o(x) \mid o(y)\) or \(o(y) \mid o(x)\). This graph is called

\footnotetext{
* Corresponding Author

Received 02 February 2018; Accepted 21 July 2018
©2021 Academic Center for Education, Culture and Research TMU
}
the main supergraph of power graph \(G\) and was introduced in [8]. The power graph \(\mathcal{P}(G)\) is a graph with the vertex set \(G\), in which two distinct elements are adjacent if one is a power of the other. The main properties of this graph were investigated by Cameron [1] and Chakrabarty et al. [2]. The proper main supergraph \(\mathcal{S}^{*}(G)\) is the graph constructed from \(\mathcal{S}(G)\) by removing the identity element of \(G\). We write \(x \sim y\) when two vertices \(x\) and \(y\) are adjacent.

We say that groups \(G_{1}\) and \(G_{2}\) are of the same order type if and only if \(M_{t}\left(G_{1}\right)=M_{t}\left(G_{2}\right)\) for all \(t\). By the definition of the main supergraph, it is clear that if \(G_{1}\) and \(G_{2}\) are groups with the same order type, then \(\mathcal{S}\left(G_{1}\right) \cong\) \(\mathcal{S}\left(G_{2}\right)\). The converse of this result is not generally correct. To prove, we consider \(G_{1}=Z_{4} \times Z_{4}\) and \(G_{2}=Z_{4} \times Z_{2} \times Z_{2}\). Since \(G_{1}\) and \(G_{2}\) are 2groups, we have \(\mathcal{S}\left(G_{1}\right) \cong \mathcal{S}\left(G_{2}\right)\). But \(M_{4}\left(G_{1}\right)=12>8=M_{4}\left(G_{2}\right)\) and \(M_{2}\left(G_{1}\right)=3<7=M_{2}\left(G_{2}\right)\).
In 1987, J. G. Thompson [16, Problem 12.37] posed the following problem:
Thompson's Problem. Suppose that \(G_{1}\) and \(G_{2}\) are two groups of the same order type. If \(G_{1}\) is solvable, is it true that \(G_{2}\) is also necessarily solvable?

Let nse \((G)\) be the set of the number of elements of the same order in \(G\). If \(G_{1}\) and \(G_{2}\) are the same type, then nse \(\left(G_{1}\right)=\operatorname{nse}\left(G_{2}\right)\) and \(\left|G_{1}\right|=\left|G_{2}\right|\). Therefore, if a group \(G\) has been uniquely determined by its order and nse \((G)\), then Thompson's problem is true for \(G\). In [11], the authors proved that no solvable group has the same order type as \(L_{2}(p)\), where \(p\) is a prime number.

Clearly, for two groups \(G_{1}\) and \(G_{2}\) that are the same order type, \(\mathcal{S}\left(G_{1}\right) \cong\) \(\mathcal{S}\left(G_{2}\right)\). So, if a group \(G\) has been uniquely determined by \(\mathcal{S}(G)\), then Thompson's problem is true for \(G\). In [12], the authors of this paper proved that alternating group of degree \(p, p+1, p+2\) and symmetric group of degree \(p\) are uniquely determined by their main supergraph. Also, in [13], [14] and [15], it is proved that the groups \(L_{2}(p), \mathrm{PGL}_{2}(p)\), where \(p\) is prime, all of the sporadic simple groups, the small Ree group \({ }^{2} G_{2}\left(3^{2 n+1}\right)\), where \(n\) is a natural number and Suzuki group are uniquely determined by their main supergraph. In this paper, we will show that \(L_{2}(q)\), where \(q\) is a prime power uniquely determined by their main supergraph. It follows that no solvable group has the same order type as \(L_{2}(q)\). In fact, the main theorem of our paper is as follow.

Theorem 1.1. Let \(\mathcal{S}(G) \cong \mathcal{S}\left(L_{2}(q)\right)\), where \(q\) is a prime power. Then \(G \cong\) \(L_{2}(q)\).

As noted above, as an immediate consequence of Main Theorem, we have that

Corollary 1.2. If \(G\) is a finite group with the same order type as \(L_{2}(q)\), where \(q\) is a prime power, then \(G\) is isomorphic to \(L_{2}(q)\).

We construct the prime graph of \(G\), which is denoted by \(\Gamma(G)\), as follows: the vertex set is \(\pi(G)\) and two distinct vertices \(p\) and \(q\) are joined by an edge
if and only if \(G\) has an element of order \(p q(p \neq q)\). Let \(t(G)\) be the number of connected components of \(\Gamma(G)\) and let \(\pi_{1}, \pi_{2}, \ldots, \pi_{t(G)}\) be the connected components of \(\Gamma(G)\). If \(2 \in \pi(G)\), then we always suppose \(2 \in \pi_{1}\).

Given a finite group \(G\), we can express \(|G|\) as a product of integers \(m_{1}, m_{2}\), \(\ldots, m_{t(G)}\), where \(\pi\left(m_{i}\right)=\pi_{i}\) for each \(i\). These numbers \(m_{i}\) are called the order components of \(G\). In particular, if \(m_{i}\) is odd, then we call it an odd order component of \(G\) (see [5]).

According to the classification theorem of finite simple groups and [10, 17, 18], we can list the order components of finite simple groups with disconnected prime graphs as in Tables 1-4 in [4].

Let \(p\) be a prime. A group \(G\) is called a \(C_{p p}\)-group if \(p \in \pi(G)\) and \(p\) is an isolated vertex of the prime graph of \(G\), in other words, the centralizers of its elements of order \(p\) in \(G\) are \(p\)-groups.

Throughout this paper we denote by \(\phi(n)\), where \(n\) is a natural number, Euler's totient function. We denote by \(P_{q}\) a Sylow \(q\)-subgroup of \(G\). The other notations and terminologies in this paper are standard, and the reader is referred to [6] if necessary.

\section*{2. Preliminary Results}

We first quote some lemmas that are used in deducing the theorem of this paper.

Lemma 2.1. [7] Let \(G\) be a finite group and \(m\) be a positive integer dividing \(|G|\). If \(L_{m}(G)=\left\{g \in G \mid g^{m}=1\right\}\), then \(m\left|\left|L_{m}(G)\right|\right.\).

Remark 2.2. Let \(M_{n}\) be the number of elements of order \(n\) in \(G\). We note that \(M_{n}=k \phi(n)\), where \(k\) is the number of cyclic subgroups of order \(n\) in \(G\). If \(n||G|\), then by Lemma 2.1 we have
\[
\left\{\begin{array}{l}
\phi(n) \mid M_{n} \\
n \mid \sum_{d \mid n} M_{d}
\end{array}\right.
\]

Definition 2.3. A group \(G\) is a 2-Frobenius group if there exists a normal series \(1 \unlhd H \unlhd K \unlhd G\) such that \(K\) and \(G / H\) are Frobenius groups with kernels \(H\) and \(K / H\), respectively.

We quote some known results about Frobenius group and 2-Frobenius group, which are useful in the sequel.

Lemma 2.4. [3] Let \(G\) be a 2-Frobenius group of even order. Then:
(a) \(t(G)=2, \pi_{1}=\pi(G / K) \cup \pi(H)\) and \(\pi_{2}=\pi(K / H)\);
(b) \(G / K\) and \(K / H\) are cyclic, \(|G / K| \mid(|K / H|-1),(|G / K|,|K / H|)=1\) and \(G / K \lesssim \operatorname{Aut}(K / H)\).

Lemma 2.5. [3] Suppose that \(G\) is a Frobenius group of even order and \(H\), \(K\) are the Frobenius kernel and the Frobenius complement of \(G\), respectively. Then \(t(G)=2\), and the prime graph components of \(G\) are \(\pi(H)\) and \(\pi(K)\).

Lemma 2.6. [18] If \(G\) is a finite group such that \(t(G) \geq 2\), then \(G\) has one of the following structures:
(a) \(G\) is a Frobenius group or a 2-Frobenius group;
(b) \(G\) has a normal series \(1 \unlhd H \unlhd K \unlhd G\) such that \(\pi(H) \cup \pi(G / K) \subseteq \pi_{1}\) and \(K / H\) is a non-abelian simple group. In particular, \(H\) is nilpotent, \(G / K \lesssim \operatorname{Out}(K / H)\) and the odd order components of \(G\) are the odd order components of \(K / H\).

\section*{3. Proof of Main Theorem}

By the definition of the main supergraph and our assumption, we have \(|G|=\) \(\left|L_{2}(q)\right|\) and \(\mathcal{S}^{*}\left(L_{2}(q)\right) \cong \mathcal{S}^{*}(G)\). Let \(q=p^{n}\), where \(p\) is a prime number. By [9, pp. 213], we have \(\mu\left(L_{2}(q)\right)=\{(q-1) / 2, p,(q+1) / 2\}\). Thus \(L_{2}(q)\) has not any element of order \(r s\), where \(r \mid(q-1) / 2\) and \(s \mid(q+1) / 2\) and \(k p\), where \(k \in \pi(G) \backslash\{p\}\). It follows that \(\mathcal{S}^{*}(G)\) is a disconnected graph with three connected components. One of the connected components is a complete graph, we denote it by \(K_{1}\) and the other of the connected components denoted by \(K_{2}\) and \(K_{3}\). Since \(L_{2}(q)\) has not any element of order \(k p\), where \(k \in \pi(G) \backslash\{p\}\), the order of complete connected component is \(M_{p}\left(L_{2}(q)\right)\). On the other hand, by [9, Theorems 8.2-8.5], \(M_{p}\left(L_{2}(q)\right)=q^{2}-1\). Thus order of \(K_{1}\) is \(q^{2}-1\). We prove the vertices of \(K_{1}\) are elements of order \(p^{k}\), where \(k \geq 1\) is an integer.

First, let \(x\) and \(y\) be two vertices of \(K_{1}\) such that \(o(x)=r, o(y)=s\) where \(r, s \in \pi(G)\) and \(r \neq s\). Since \(K_{1}\) is a complete graph, we have \(x \sim y\), a contradiction. So, the vertices of \(K_{1}\) are elements of order \(r^{k}\), where \(r\) is prime and \(k \geq 1\) is an integer. We will show that \(r=p\). Let the vertices of \(K_{1}\) be all of \(x \in G\) such that \(o(x)=r, r^{2}, \ldots\), or \(r^{k}\) (note that \(\exp \left(P_{r}\right)=r^{k}\) ). Then with considering \(n=\left|P_{r}\right|\) in Remark 2.2, \(\left|P_{r}\right| \mid\left(1+M_{r}+M_{r^{2}}+\ldots+M_{r^{k}}\right)=\) \(1+q^{2}-1=q^{2}\). It follows that \(r=p\). Hence, the vertices of \(K_{1}\) are \(x \in G\) such that \(o(x)=p^{k}\), where \(k \geq 1\) is an integer. It follows that \(p\) is an isolated vertex of the prime graph of \(G\).

Let \(x, y\) be two arbitrary vertices of \(K_{2}\) and \(K_{3}\), respectively such that \(o(x)=r\) and \(o(y)=s\), where \(r\) and \(s\) are primes. We prove that \(r\) and \(s\) are not joined by an edge in the prime graph of \(G\). Let \(r\) and \(s\) are joined by an edge in the prime graph of \(G\). Then \(r s \in \pi_{e}(G)\). So, there exists an element of order \(r s\) in \(G\). Assume \(z \in G\) and \(o(z)=r s\). By the definition of the main supergraph \(x \sim z\) and \(y \sim z\). Thus \(K_{2}\) and \(K_{3}\) are connected, a contradiction. It follows that \(t(G) \geq 3\).

Since \(t(G) \geq 3\), Lemmas 2.4(a) and 2.5 show that \(G\) is neither a Frobenius group nor a 2-Frobenius group. By Lemma 2.6, \(G\) has a normal series \(1 \unlhd N \triangleleft\) \(G_{1} \unlhd G\) such that \(N\) is a nilpotent \(\pi_{1}\)-group, \(G / G_{1}\) is a solvable \(\pi_{1}\)-group and
\(G_{1} / N\) is a simple \(C_{p p}\)-group. Since \(G\) is a \(C_{p p}\)-group, the odd order component \(q\) of \(G\) is equal to a certain odd order component of \(G_{1} / N\) (by the prime graph components of \(G\) ). In particular, \(t\left(G_{1} / N\right) \geq 3\). Furthermore, \(G_{1} / N \lesssim G / N\) \(\lesssim \operatorname{Aut}\left(G_{1} / N\right)\) by Lemma 2.6.

Now using the classification of finite simple groups and the results in Tables 1-4 in [4], we consider the following steps.
Step 1. We prove that \(G_{1} / N\) can not be an alternating group \(A_{n^{\prime}}\).
If \(G_{1} / N \cong A_{n^{\prime}}\), then since the odd order components of \(A_{n^{\prime}}\) are primes, say \(p^{\prime}\) or \(p^{\prime}-2\), we conclude that \(q=p^{\prime}\) or \(q=p^{\prime}-2\). In both cases, \(q\) is a prime number. By Tables 1-4 in [4], we have \(G_{1} / N \cong A_{q}, A_{q+1}\) or \(A_{q+2}\). Suppose \(G_{1} / N \cong A_{q}\). It follows that \(\frac{q!}{2} \leq \frac{q\left(q^{2}-1\right)}{2|N|}\) since \(G / N \lesssim \operatorname{Aut}\left(G_{1} / N\right)\), or equivalently, \(|N|(q-2)!\leq q+1 \leq 2|N|(q-2)\) !. Since \(q \geq 5\), we conclude that \(2(q-2) \leq(q-2)(q-3)!\leq|N|(q-2)!\leq q+1\), which implies that \(q \leq 5\), and so \(q=5\). We have already considered the case \(q\) is prime. Thus the case \(G_{1} / N \cong A_{q}\) can be ruled out. The cases \(G_{1} / N \cong A_{q+1}\) and \(A_{q+2}\) can be ruled out similarly.
Step 2. If \(G_{1} / N \cong L_{r+1}\left(q^{\prime}\right)\), then since \(t\left(G_{1} / N\right) \geq 3\) we distinguish the following four cases.
2.1. \(G_{1} / N \cong L_{2}\left(q^{\prime}\right)\), where \(4 \mid\left(q^{\prime}+1\right)\) and \(q^{\prime}\) is a prime power. Then \(q=q^{\prime}\) or \(\frac{q^{\prime}-1}{2}\). Moreover, \(\frac{q^{\prime}\left(q^{\prime 2}-1\right)}{2} \leq \frac{q\left(q^{2}-1\right)}{2|N|}\) in both cases. If \(q=q^{\prime}\), then \(\frac{q\left(q^{2}-1\right)}{2} \leq \frac{q\left(q^{2}-1\right)}{2|N|}\), which implies that \(|N|=1\). It follows that \(G \cong L_{2}(q)\).

If \(q=\frac{q^{\prime}-1}{2}\), then \(q^{\prime}=2 q+1\). Since \(\left.\frac{q^{\prime}\left(q^{\prime 2}-1\right)}{2} \right\rvert\, \frac{q\left(q^{2}-1\right)}{2|N|}\), we have that \((2 q+1)\left[(2 q+1)^{2}-1\right] \leq \frac{q\left(q^{2}-1\right)}{|N|}\). It follows that \((2 q+1)\left[(2 q+1)^{2}-1\right] \leq q\left(q^{2}-1\right)\), which implies that \(7 q \leq-1\), a contradiction.
2.2. \(G_{1} / N \cong L_{2}\left(q^{\prime}\right)\), where \(4 \mid\left(q^{\prime}-1\right)\) and \(q^{\prime}\) is a prime power. Then \(q=q^{\prime}\) or \(\frac{q^{\prime}+1}{2}\). Moreover, \(\frac{q^{\prime}\left(q^{\prime 2}-1\right)}{2} \leq \frac{q\left(q^{2}-1\right)}{2|N|}\) in both cases. If \(q=q^{\prime}\), then \(q\left(q^{2}-1\right) \leq \frac{q\left(q^{2}-1\right)}{|N|}\), which implies that \(|N|=1\). It follows that \(G \cong L_{2}(q)\).

If \(q=\frac{q^{\prime}+1}{2}\), then \(q^{\prime}=2 q-1\). Since \(\left.\frac{q^{\prime}\left(q^{\prime 2}-1\right)}{2} \right\rvert\, \frac{q\left(q^{2}-1\right)}{2|N|}\), we have that \((2 q-1)\left[(2 q-1)^{2}-1\right] \leq \frac{q\left(q^{2}-1\right)}{|N|}\). It follows that \(q\left[(2 q-1)^{2}-1\right] \leq(2 q-1)[(2 q-\) \(\left.1)^{2}-1\right] \leq q\left(q^{2}-1\right)\), which implies that \(3 q \leq 1\), a contradiction.
2.3. \(G_{1} / N \cong L_{2}\left(q^{\prime}\right)\), where \(4 \mid q^{\prime}\) and \(q^{\prime}\) is a prime power. First, let \(q\) be a power of \(p \neq 2\). Then \(q=q^{\prime}+1\) or \(q^{\prime}-1\), and \(q^{\prime}\left(q^{\prime 2}-1\right) \left\lvert\, \frac{q\left(q^{2}-1\right)}{2|N|}\right.\). If \(q=q^{\prime}+1\), then \(q^{\prime}=q-1\). It follows that \((q-1)\left[(q-1)^{2}-1\right] \leq \frac{q\left(q^{2}-1\right)}{2|N|}\), which implies that \(q \leq 5\). Hence, \(q=5\), which implies that \(|N|=1\) and \(G \cong L_{2}(5)\).

If \(q=q^{\prime}-1\), then \(q^{\prime}=q+1\). Since \(q^{\prime}\left(q^{\prime 2}-1\right) \left\lvert\, \frac{q\left(q^{2}-1\right)}{2|N|}\right.\), we have that \((q+1)\left[(q+1)^{2}-1\right] \left\lvert\, \frac{q\left(q^{2}-1\right)}{2|N|}\right.\). It follows that \(q^{2}+2 q \mid q\left(q^{2}-1\right)\), which implies that \(q+2 \mid q-1\), a contradiction.

Now, let \(q\) be a power of 2 . Then \(q=q^{\prime}+1\), or \(q^{\prime}\), and \(q^{\prime}\left(q^{\prime 2}-1\right) \left\lvert\, \frac{q\left(q^{2}-1\right)}{|N|}\right.\). If \(q=q^{\prime}+1\), then \(q^{\prime}=q-1\). It follows that \((q-1)\left[(q-1)^{2}-1\right] \leq \frac{q\left(q^{2}-1\right)}{|N|}\), which implies that \(q \leq 5\). Hence, \(q=4\), which implies that \(q^{\prime}=3\), a contradiction.

If \(q=q^{\prime}\), then \(q\left(q^{2}-1\right) \leq \frac{q\left(q^{2}-1\right)}{|N|}\), which implies that \(|N|=1\). It follows that \(G \cong L_{2}(q)\).
2.4. \(G_{1} / N \cong L_{3}(2)\) or \(L_{3}(4)\). If \(G_{1} / N \cong L_{3}(2) \cong L_{2}(7)\), then \(q\) must be equal to 3,7 . Since \(q>3, q=7\), which implies that \(|N|=1\) and \(G \cong L_{2}(7)\), as desired.

If \(G_{1} / N \cong L_{3}(4)\), then \(q\) must be equal to \(3,5,7\) or 9 . So, \(q=5,7\), or 9 . Since \(\left|L_{3}(4)\right|||G|\), we get a contradiction.
Step 3. If \(G_{1} / N \cong F_{4}\left(q^{\prime}\right)\), where \(q^{\prime}\) is a prime power, then we distinguish the following two cases.
3.1. Suppose \(G_{1} / N \cong F_{4}\left(q^{\prime}\right)\), where \(q^{\prime}\) is an odd prime power. Then \(q=\) \(q^{\prime 4}-q^{\prime 2}+1\) and \(q^{\prime 24}\left(q^{\prime 8}-1\right)\left(q^{\prime 6}-1\right)^{2}\left(q^{\prime 4}-1\right) \left\lvert\, \frac{q^{2}-1}{2}\left(\right.\) or \(q^{2}-1\) when \(q\) is even). Thus \right. \(q^{2}=\left(q^{\prime 4}-q^{\prime 2}+1\right)^{2} \leq q^{\prime 8}\) and \(q^{\prime 24}<q^{\prime 24}\left(q^{\prime 8}-1\right)\left(q^{\prime 6}-1\right)^{2}\left(q^{\prime 4}-1\right) \leq \frac{q^{2}-1}{2}<q^{2}\). Hence, \(q^{\prime 24}<q^{\prime 8}\), which implies that \(q^{\prime}<1\), a contradiction.
3.2. Suppose \(G_{1} / N \cong F_{4}\left(q^{\prime}\right)\), where \(2 \mid q^{\prime}\) and \(q^{\prime}>2\). Then \(q=q^{\prime 4}+1\) or \(q^{\prime 4}-q^{\prime 2}+1\). If \(q=q^{\prime 4}+1\), then \(q^{\prime 24}\left(q^{\prime 6}-1\right)^{2}\left(q^{\prime 4}-1\right)^{2}\left(q^{\prime 4}-q^{\prime 2}+1\right) \left\lvert\, \frac{q^{2}-1}{2}(\) or \right. \(q^{2}-1\) when \(q\) is even). Thus \(q^{2}=\left(q^{\prime 4}+1\right)^{2}<q^{10}\) and \(q^{\prime 24}<q^{\prime 24}\left(q^{\prime 6}-1\right)^{2}\left(q^{\prime 4}-\right.\) \(1)^{2}\left(q^{\prime 4}-q^{\prime 2}+1\right) \leq \frac{q^{2}-1}{2}<q^{2}\). Hence, \(q^{\prime 24}<q^{\prime 10}\), which implies that \(q^{\prime}<1\), a contradiction. If \(q=q^{\prime 4}-q^{\prime 2}+1\), then \(q^{\prime 24}\left(q^{\prime 6}-1\right)^{2}\left(q^{\prime 4}-1\right)^{2}\left(q^{\prime 4}+1\right) \left\lvert\, \frac{q^{2}-1}{2}\right.\) (or \(q^{2}-1\) when \(q\) is even). Thus \(q^{2}=\left(q^{\prime 4}-q^{\prime 2}+1\right)^{2}<q^{\prime 8}\) and \(q^{\prime 24}<q^{\prime 24}\left(q^{\prime 6}-\right.\) \(1)^{2}\left(q^{\prime 4}-1\right)^{2}\left(q^{\prime 4}+1\right) \leq \frac{q^{2}-1}{2}<q^{2}\). Hence \(q^{\prime 24}<q^{\prime 8}\), which implies that \(q^{\prime}<1\), a contradiction.
Step 4. If \(G_{1} / N \cong^{2} F_{4}\left(q^{\prime}\right)\), where \(q^{\prime}=2^{2 t+1}>2\), then \(q=q^{\prime 2} \pm \sqrt{2 q^{\prime 3}}+q^{\prime} \pm\) \(\sqrt{2 q^{\prime}}+1\) and \(q^{\prime 12}\left(q^{\prime 4}-1\right)\left(q^{\prime 3}+1\right)\left(q^{\prime 2}+1\right)\left(q^{\prime}-1\right)\left(q^{\prime 2} \pm \sqrt{2 q^{\prime 3}}+q^{\prime} \pm \sqrt{2 q^{\prime}}+1\right) \left\lvert\, \frac{q^{2}-1}{2}\right.\) (or \(q^{2}-1\) when \(q\) is even). Thus \(q^{2}=\left(q^{\prime 2} \pm \sqrt{2 q^{\prime 3}}+q^{\prime} \pm \sqrt{2 q^{\prime}}+1\right)^{2} \leq q^{\prime 10}\) and \(q^{\prime 12}<q^{122}\left(q^{\prime 4}-1\right)\left(q^{\prime 3}+1\right)\left(q^{\prime 2}+1\right)\left(q^{\prime}-1\right)\left(q^{\prime 2} \pm \sqrt{2 q^{\prime 3}}+q^{\prime} \pm \sqrt{2 q^{\prime}}+1\right) \leq \frac{q^{2}-1}{2}<q^{2}\). Hence, \(q^{\prime 12}<q^{\prime 10}\), which implies that \(q^{\prime}<1\), a contradiction.
Step 5. If \(G_{1} / N \cong G_{2}\left(q^{\prime}\right)\), where \(3 \mid q^{\prime}\). Then \(q=q^{\prime 2}+q^{\prime}+1\) or \(q^{\prime 2}-q^{\prime}+1\).
If \(q=q^{\prime 2}+q^{\prime}+1\), then \(q^{\prime 6}\left(q^{\prime 2}-1\right)^{2}\left(q^{\prime 2}-q^{\prime}+1\right) \left\lvert\, \frac{q^{2}-1}{2}\left(\right.\) or \(q^{2}-1\) when \(q\right.\) is even). Thus \(q^{2}=\left(q^{\prime 2}+q^{\prime}+1\right)^{2} \leq\left(q^{\prime 3}-1\right)^{2} \leq q^{\prime 6}\) and \(q^{\prime 6}\left(q^{\prime 2}-1\right)<q^{\prime 6}\) \(\left(q^{\prime 2}-1\right)^{2}\left(q^{\prime 2}-q^{\prime}+1\right) \leq \frac{q^{2}-1}{2}<q^{2}\). Hence, \(q^{\prime 6}\left(q^{\prime 2}-1\right)<q^{\prime 6}\), which implies that \(q^{\prime}<2\), a contradiction.

If \(q=q^{\prime 2}-q^{\prime}+1\), then \(q^{\prime 6}\left(q^{\prime 2}-1\right)^{2}\left(q^{\prime 2}+q^{\prime}+1\right) \left\lvert\, \frac{q^{2}-1}{2}\left(\right.\) or \(q^{2}-1\) when \(q\) is even \()\right.\). Thus \(q^{2}=\left(q^{\prime 2}-q^{\prime}+1\right)^{2} \leq q^{\prime 4}\) and \(q^{\prime 6}<q^{\prime 6}\left(q^{\prime 2}-1\right)^{2}\left(q^{\prime 2}+q^{\prime}+1\right) \leq \frac{q^{2}-1}{2}<q^{2}\). Hence, \(q^{\prime 6}<q^{\prime 4}\), which implies that \(q^{\prime}<1\), a contradiction.
Step 6. If \(G_{1} / N \cong{ }^{2} G_{2}\left(q^{\prime}\right)\), where \(q^{\prime}=3^{2 t+1}>3\), then \(q=q^{\prime} \pm \sqrt{3 q^{\prime}}+1\) and \(q^{\prime 3}\left(q^{\prime 2}-1\right)\left(q^{\prime} \pm \sqrt{3 q^{\prime}}+1\right) \left\lvert\, \frac{q^{2}-1}{2}\right.\) (or \(q^{2}-1\) when \(q\) is even). Thus \(q^{2}=\)
\(\left(q^{\prime} \pm \sqrt{3 q^{\prime}}+1\right)^{2} \leq\left[\left(q^{\prime}+1\right)^{2}-3 q^{\prime}\right]^{2}=\left(q^{\prime 2}-q^{\prime}+1\right)^{2}<q^{\prime 4}\) and \(q^{\prime 3}\left(q^{\prime 2}-1\right)<\) \(q^{\prime 3}\left(q^{\prime 2}-1\right)\left(q^{\prime} \pm \sqrt{3 q^{\prime}}+1\right) \leq \frac{q^{2}-1}{2}<q^{2}\). Hence, \(q^{\prime 3}\left(q^{\prime 2}-1\right)<q^{\prime 4}\), which implies that \(q^{\prime}<2\), a contradiction.
Step 7. If \(G_{1} / N \cong{ }^{2} B_{2}\left(q^{\prime}\right)\), where \(q^{\prime}=2^{2 t+1}>2\), then we distinguish the following three cases.
7.1. Suppose \(q=q^{\prime}-1\). Then \(q^{\prime}=q+1\). Since \(q^{\prime 2}\left(q^{\prime}-\sqrt{2 q^{\prime}}+1\right)\left(q^{\prime}+\right.\) \(\left.\sqrt{2 q^{\prime}}+1\right) \left\lvert\, \frac{q^{2}-1}{2}\left(\right.\) or \(q^{2}-1\) when \(q\) is even \()\right.\), it follows that \((q+1)^{2}\left[(q+1)^{2}+1\right] \leq\) \(\frac{q^{2}-1}{2}<q^{2}\), a contradiction.
7.2. Suppose \(q=q^{\prime}-\sqrt{2 q^{\prime}}+1\). Since \(q^{\prime 2}\left(q^{\prime}-1\right)\left(q^{\prime}+\sqrt{2 q^{\prime}}+1\right) \left\lvert\, \frac{q^{2}-1}{2}\left(\right.\) or \(q^{2}-1\right.\) when \(q\) is even) and \(q^{\prime}>2\), it follows that \(q^{\prime 2}\left(q^{\prime}-\sqrt{2 q^{\prime}}+1\right)\left(q^{\prime}+\sqrt{2 q^{\prime}}+1\right) \leq\) \(q^{\prime 2}\left(q^{\prime}-1\right)\left(q^{\prime}+\sqrt{2 q^{\prime}}+1\right) \leq\left(q^{2}-1\right) / 2<q^{2}=\left(q^{\prime}-\sqrt{2 q^{\prime}}+1\right)^{2}\). Therefore \(q^{\prime 2}\left(q^{\prime}+\sqrt{2 q^{\prime}}+1\right)<q^{\prime}-\sqrt{2 q^{\prime}}+1<q^{\prime}+\sqrt{2 q^{\prime}}+1\), which shows that \(q^{\prime 2}<1\), a contradiction.
7.3. Suppose \(q=q^{\prime}+\sqrt{2 q^{\prime}}+1\). Since \(q^{\prime 2}\left(q^{\prime}-1\right)\left(q^{\prime}-\sqrt{2 q^{\prime}}+1\right) \left\lvert\, \frac{q^{2}-1}{2}\right.\), it follows that \(q^{\prime 2}\left(q^{\prime}-\sqrt{2 q^{\prime}}+1\right)^{2} \leq q^{\prime 2}\left(q^{\prime}-1\right)\left(q^{\prime}-\sqrt{2 q^{\prime}}+1\right) \leq \frac{q^{2}-1}{2}<\) \(q^{2}=\left(q^{\prime}+\sqrt{2 q^{\prime}}+1\right)^{2}\). Therefore \(q^{\prime}\left(q^{\prime}-\sqrt{2 q^{\prime}}\right)<q^{\prime}\left(q^{\prime}-\sqrt{2 q^{\prime}}+1\right)<q^{\prime}+\) \(\sqrt{2 q^{\prime}}+1<2 q^{\prime}+\sqrt{2 q^{\prime}}\), which shows that \(q^{\prime}\left(q^{\prime}-\sqrt{2 q^{\prime}}\right)<2 q^{\prime}+\sqrt{2 q^{\prime}}\). Thus \(\sqrt{q^{\prime}}\left(q^{\prime}-\sqrt{2 q^{\prime}}\right)<2 \sqrt{q^{\prime}}+\sqrt{2}<3 \sqrt{q^{\prime}}\). Hence, \(q^{\prime}-\sqrt{2 q^{\prime}}<3\). It follows that \(4-\sqrt{7}<q^{\prime}<4+\sqrt{7}\), which shows that \(1<q^{\prime}<7\). This is a contradiction since \(q^{\prime}=2^{2 t+1} \geq 8\).
Step 8. If \(G_{1} / N \cong E_{7}(2), E_{7}(3)\), or \({ }^{2} E_{6}(2)\).
8.1. If \(G_{1} / N \cong E_{7}(2)\), then \(\left|G_{1} / N\right|=\left|E_{7}(2)\right|=2^{63} \cdot 3^{11} \cdot 5^{2} \cdot 7^{3} \cdot 11 \cdot 13\). \(17 \cdot 19 \cdot 31 \cdot 43 \cdot 73 \cdot 127\) and \(q=73\) or 127 . Because \(\left|G_{1} / N\right| \nmid G\left|=\left|L_{2}(q)\right|\right.\), we get a contradiction.
8.2. If \(G_{1} / N \cong E_{7}(3)\), then \(\left|G_{1} / N\right|=\left|E_{7}(3)\right|=2^{23} \cdot 3^{63} \cdot 5^{2} \cdot 7^{3} \cdot 11^{2}\). \(13^{3} \cdot 17 \cdot 19 \cdot 37 \cdot 41 \cdot 61 \cdot 73 \cdot 547 \cdot 757 \cdot 1093\) and \(q=757\) or 1093. Because \(\left|G_{1} / N\right| \nmid|G|=\left|L_{2}(q)\right|\), we get a contradiction.
8.3. If \(G_{1} / N \cong{ }^{2} E_{6}(2)\), then \(\left|G_{1} / N\right|=\left|{ }^{2} E_{6}(2)\right|=2^{36} \cdot 3^{9} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19\) and \(q=13,17\) or 19 . We get a contradiction by \(\left|G_{1} / N\right| \nmid|G|=\left|L_{2}(q)\right|\).
Step 9. If \(G_{1} / N\) is a sporadic simple group, then \(q=5,7,11,13,17,19,23,29\), \(31,37,41,43,47,59,67\), or 71 . It is easy to check that \(\left|G_{1} / N\right| \nmid|G|=\left|L_{2}(q)\right|\), we get a contradiction.

The other steps are very similar and we omit them.
Now, we have just seen if \(G_{1} / N \cong L_{2}\left(q^{\prime}\right)\), where \(4 \mid\left(q^{\prime}-1\right)\) and \(q^{\prime}\) is a prime power, \(G_{1} / N \cong L_{2}\left(q^{\prime}\right)\), where \(4 \mid\left(q^{\prime}+1\right)\) and \(q^{\prime}\) is a prime power or \(G_{1} / N\) \(\cong L_{2}\left(q^{\prime}\right)\), where \(4 \mid q^{\prime}\) and \(q^{\prime}\) is a prime power, then \(q=q^{\prime}\) and \(G \cong L_{2}(q)\). In the other cases we get a contradiction.

This completes the proof of the main theorem.

\section*{Acknowledgments}

The authors would like to thank the referees for their careful reading and useful suggestions which led us to improve the paper.

\section*{References}
1. P. J. Cameron, The power graph of a finite group, II, J. Group Theory, 13 (2010), 779-783.
2. I. Chakrabarty, S. Ghosh, M. K. Sen, Undirected power graphs of semigroups, Semigroup Forum, 78 (2009), 410-426.
3. G. Y. Chen, On Frobenius and 2-Frobenius group, J. Southwest China Normal Univ, 20 (1995), 485-487. (in Chinese)
4. G. Y. Chen, Further reflections on Thompson's conjecture, J. Algebra, 218 (1999), 276285.
5. G. Y. Chen, On Thompson's conjecture, J. Algebra, 185(1) (1996), 184-193.
6. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon, Oxford, 1985.
7. G. Frobenius, Verallgemeinerung des Sylow'schen Satzes. Berl. Ber, (1895), 981-993. (In German)
8. A. Hamzeh, A. R. Ashrafi, Automorphism groups of supergraphs of the power graph of a finite group, European J. Combin, 60 (2017), 82-88.
9. B. Huppert, Endliche Gruppen, I, Springer, Berlin, 1967.
10. N. Iiyori, H. Yamaki, Prime graph components of the simple groups of Lie type over the field of even characteristic, J. Algebra, 155(2) (1993), 335-343.
11. A. Khalili, A. Iranmanesh, A characterization of linear group \(L_{2}(p)\), Czechoslovak Math. \(J, 64\) (139) (2014), 459-464.
12. A. Khalili, S. S. Salehi, Some alternating and symmetric groups and related graphs, Beitr Algebra Geom, 59 (2018), 21-24.
13. A. Khalili, S. S. Salehi, Some results on the main supergraph of finite groups, Algebra Discrete Math, 30(2) (2020), 172-178.
14. A. Khalili, S. S. Salehi, The small Ree group \({ }^{2} G_{2}\left(3^{2 n+1}\right)\) and related graph, Comment. Math. Univ. Carolin, 59(3) (2018), 271-276.
15. A. Khalili, S. S. Salehi, Recognizability of finite groups by Suzuki group, Arch. Math., Brno, 55 (2019), 225-228.
16. V. D. Mazurov, E. I. Khukhro, Unsolved problems in group theory, The Kourovka Notebook, (English version), ArXiv e-prints, (18), January 2014. Available at http://arxiv.org/abs/1401.0300v6.
17. A. S. Kondtratev, V. D. Mazurove, Recognition of alternating groups of prime degree from their element orders, Sib. Math. J, 41(2) (2000), 294-302.
18. J. S. Williams, Prime graph components of finite groups, J. Algebra, 69 (2) (1981), 487513.```

