Relative Non-normal Graphs of a Subgroup of Finite Groups

M. Ziyaaddini ${ }^{a}$, A. Erfanian ${ }^{b *}$
${ }^{a}$ Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran.
${ }^{b}$ Department of Pure Mathematics and the Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Mashhad, Iran.

```
E-mail: ma.ziyaaddini@stu.um.ac.ir
    E-mail: erfanian@um.ac.ir
```

Abstract. Let G be a finite group and H, K be two subgroups of G. We introduce the relative non-normal graph of K with respect to H, denoted by $\mathfrak{N}_{H, K}$, which is a bipartite graph with vertex sets $H \backslash H_{K}$ and $K \backslash N_{K}(H)$ and two vertices $x \in H \backslash H_{K}$ and $y \in K \backslash N_{K}(H)$ are adjacent if $x^{y} \notin H$, where $H_{K}=\bigcap_{k \in K} H^{k}$ and $N_{K}(H)=\left\{k \in K: H^{k}=H\right\}$. We determined some numerical invariants and state that when this graph is planar or outerplanar.

Keywords: Non-normal graph, Relative non-normal graph, Normality degree, Outer planar.

2010 Mathematics subject classification: Primary 05C25 ; Secondary 20P05.

1. Introduction

There are many ways to assign a graph to groups and many graphs have been associated to a group, such as non-cyclic graph, Engel graph and noncommuting graph (see [3, 1, 2]). Saeedi, Farrokhi and Jafari [8] introduced the subgroup normality degree of finite groups as the ratio of the number of pairs

[^0]$(h, g) \in H \times G$ such that $h^{g} \in H$ by $|H||G|$, where G is a finite group and H is a subgroup of G. Erfanian, Farrokhi and Tolue [7] defined non-normal graph of finite groups as follows: Let H be a subgroup of a group G. Then non-normal graph of G with respect to H, denoted by $\mathfrak{N}_{H, G}$, is defined as a bipartite graph with vertex sets $H \backslash H_{G}$ and $G \backslash N_{G}(H)$ as its parts in such a way that two vertices $h \in H \backslash H_{G}$ and $g \in G \backslash N_{G}(H)$ are adjacent if $h^{g} \notin H$. Also they gave some properties of $\mathfrak{N}_{H, G}$ such as girth, diameter and planarity.

In this paper, we aim to give a generalization of non-normal graph. We note that the idea of non-normal graph comes from the probability of a subgroup H is normal in G. Now, we may replace group G by another subgroup K of G. In other words, we can consider normality of H with respect to the subgroup K i.e. H is normal with respect to K whenever $h^{k} \in H$ for all $k \in K$ and all $h \in H$. Thus, we state the related graph namely relative non-normal graph as the following. For any two subgroups H and K of G, we remind that $H_{K}=\bigcap_{k \in K} H^{k}$ and $N_{K}(H)=\left\{k \in K: H^{k}=H\right\}=N_{G}(H) \bigcap K$. So for all $h \in H$ and $k \in K$, if $h \in H_{K}$ or $k \in N_{K}(H)$ then $h^{k} \in H$. Assume that $|H| \leq\left|N_{K}(H)\right|$, the relative non-normal graph of K with respect to H, denoted by $\mathfrak{N}_{H, K}$, is defined as a bipartite graph with vertex sets $H \backslash H_{K}$ and $K \backslash N_{K}(H)$ as its parts in such a way that two vertices $h \in H \backslash H_{K}$ and $k \in K \backslash N_{K}(H)$ are adjacent if $h^{k} \notin H$.
Clearly, if H is normal with respect to K, then $\mathfrak{N}_{H, K}$ is a null graph. Moreover, if $K=G, \mathfrak{N}_{H, K}$ and $\mathfrak{N}_{H, G}$ are concide. As it is mentioned before, the subgroup normality degree of H in G is defined as the following :

$$
P_{N}(H, G)=\frac{\left|\left\{(h, g) \in H \times G: h^{g} \in H\right\}\right|}{|H||G|}
$$

So the relative normality degree of H in K can be similarly defined. It is easy to see that, the graph $\mathfrak{N}_{H, K}$ and the relative normality degree of H in K are associated through the equality

$$
\left|E\left(\mathfrak{N}_{H, K}\right)\right|=|H||K|\left(1-P_{N}(H, K)\right)
$$

where $E\left(\mathfrak{N}_{H, K}\right)$ denotes the set of all edges of $\mathfrak{N}_{H, K}$.
In this paper, we state some results which are mostly new or an improvement of results given in [7]. In the next section, we give some basic properties of this graph. Section 3 deals with diameter and girth of the graph and classify all cases that diameter is 2,3 or 4 . In section 4 , planarity and outer planarity are investigated. Given a graph $\Gamma=(V, E)$, a dominating set for Γ is a subset D of V such that every vertex not in D is adjacent to at least one member of D . The domination number $\gamma(\Gamma)$ is the number of vertices in a smallest dominating set for Γ. An independent set or stable set is a set of vertices in a graph, no two of which are adjacent. A planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a
way that no edges cross each other. An undirected graph is an outerplanar graph if it can be drawn in the plane without crossings in such a way that all of the vertices belong to the unbounded face of the drawing. That is, no vertex is totally surrounded by edges. Alternatively, a graph Γ is outerplanar if the graph formed from Γ by adding a new vertex, with edges connecting it to all the other vertices, is a planar graph. For set X, we assume $X^{2}=\left\{x^{2}: x \in X\right\}$.

2. Preliminary Results

Let H and K be two subgroups of a finite group G and $\mathfrak{N}_{H, K}$ be the relative non-normal graph of K with respect to H. Remind that $\mathfrak{N}_{H, K}$ is a bipartite graph with bipartition $H \backslash H_{K}$ and $K \backslash N_{K}(H)$. As $K \backslash N_{K}(H)$ is a union of right cosets of $N_{K}(H)$, we have

$$
\left|H \backslash H_{K}\right|<|H| \leq\left|N_{K}(H)\right| \leq\left|K \backslash N_{K}(H)\right|
$$

Now let $h \in H \backslash H_{K}$ and $k \in K \backslash N_{K}(H)$. Then the neighbor of h in $\mathfrak{N}_{H, K}$, denoted by $N_{\mathfrak{N}_{H, K}}(h)$ is the set of all elements $x \in K \backslash N_{K}(H)$ such that $h^{x} \notin H$ that is $N_{\mathfrak{N}_{H, K}}(h)=K \backslash A(K, H, h)$, where $A(K, H, h)=\{x \in K$: $\left.h^{x} \in H\right\}$. Similarly the neighbor of k in $\mathfrak{N}_{H, K}$ equals $H \backslash B(K, H, k)$, where $B(K, H, k)=\left\{y \in H: y^{k} \in H\right\}$. It is evident that $B(K, H, k)=H \cap H^{k^{-1}}$ hence $N_{\mathfrak{N}_{H, K}}(k)=H \backslash H \cap H^{k^{-1}}$. As $A(K, H, h)$ is a union of right cosets of $N_{K}(H)$ we observe that $N_{\mathfrak{N}(H, K)}(h)$ is a non-empty union of right cosets of $N_{K}(H)$ and hence

$$
\operatorname{deg}_{\mathfrak{N}_{H, K}}(h)=\left|N_{\mathfrak{N}_{H, K}}(h)\right| \geq\left|N_{K}(H)\right| \geq|H|>\left|H \backslash H \cap H^{k^{-1}}\right|=\operatorname{deg}_{\mathfrak{N}_{H, K}}(k)
$$

where $\operatorname{deg}_{\mathfrak{N}_{H, K}}(h)$ and $\operatorname{deg}_{\mathfrak{N}_{H, K}}(k)$ denote the degree of h and k in $\mathfrak{N}_{H, K}$, respectively. In particular, $\mathfrak{N}_{H, K}$ is never a regular graph.

Lemma 2.1. If H and K are two subgroups of a finite group G, then $\mathfrak{N}_{H, K}$ is an induced subgraph of $\mathfrak{N}_{H, G}$.

Proof. The proof follows from the fact that $H \backslash H_{K} \subseteq H \backslash H_{G}$ and $K \backslash N_{K}(H) \subseteq$ $G \backslash N_{G}(H)$ directly.

Theorem 2.2. We have
(i) $K \backslash N_{K}(H)$ is a maximal independent set of $\mathfrak{N}_{H, K}$,
(ii) the size of maximal dominating sets of $\mathfrak{N}_{H, K}$ are at most $d(H)+[K$:

$$
\left.N_{K}(H)\right]-1
$$

Proof. (i) Clearly $H \backslash H_{K}$ and $K \backslash N_{K}(H)$ are independent sets of $\mathfrak{N}_{H, K}$. If X is a maximal independent set of $\mathfrak{N}_{H, K}$, then $X=A \cup B$, where $A \subseteq H \backslash H_{K}$ and $B \subseteq K \backslash N_{K}(H)$. Since $|X|$ is maximum, B is a union of right cosets of
$N_{K}(H)$. Now if $X \neq K \backslash N_{K}(H)$, then $|B| \leq\left|K \backslash N_{K}(H)\right|-\left|N_{K}(H)\right|$, from which it follows that

$$
|A|+|B|<|H|+\left|K \backslash N_{K}(H)\right|-\left|N_{K}(H)\right| \leq\left|K \backslash N_{K}(H)\right|,
$$

which is a contradiction. Therefore $K \backslash N_{K}(H)$ is a maximal independent set of $\mathfrak{N}_{H, K}$ and the proof of (i) is completed.
(ii) If X is a minimal generating set for H, then it is easy to see that every element of $K \backslash N_{K}(H)$ is adjacent to some elements of X. Since the neighbor of every element of $H \backslash H_{K}$ is a union of right cosets of $N_{K}(H)$, every element of $H \backslash H_{K}$ is adjacent to some element of Y, where Y is a set of representatives of non-trivial right cosets of $N_{K}(H)$ in K. Hence the size of every dominating set of $\mathfrak{N}_{H, K}$ is bounded above by $|X|+|Y|=d(H)+\left[K: N_{K}(H)\right]-1$ and the proof is complete.

In the sequel, G stands for a finite group and H and K denote two nonnormal subgroups of G.

3. Diameter and Girth

In the previous section, we gave some elementary properties of $\mathfrak{N}_{H, K}$. Now we shall determine some more properties of $\mathfrak{N}_{H, K}$. We start with the following simple lemma which is necessary to find an upper bound for the diameter of $\mathfrak{N}_{H, K}$.

Lemma 3.1. $\mathfrak{N}_{H, K}$ has a pendant vertex if and only if $|H|=2$ and $\mathfrak{N}_{H, K}$ is a star graph.

Proof. Let $x \in V\left(\mathfrak{N}_{H, K}\right)$ be a pendant vertex. If $x \in H \backslash H_{K}$, then $\mid K \backslash$ $A(K, H, x) \mid=\operatorname{deg} x=1$. But $A(K, H, x)$ is a union of right cosets of $N_{K}(H)$ and so $\left|N_{K}(H)\right|$ divides $|K \backslash A(K, H, x)|$, which is impossible. Thus $x \in K \backslash$ $N_{K}(H)$. Then $\left|H \backslash H \cap H^{x^{-1}}\right|=\operatorname{deg} x=1$. Now since $H \cap H^{x^{-1}}$ is a subgroup of $H,\left|H \cap H^{x^{-1}}\right|$ divides $\left|H \backslash H \cap H^{x^{-1}}\right|$ and so $\left|H \cap H^{x^{-1}}\right|=1$. Hence $|H|=2$ and the result follows. The converse is obvious.

Theorem 3.2. $\operatorname{diam}\left(\mathfrak{N}_{H, K}\right) \leq 4$.
Proof. Let x and y be two non-adjacent vertices of $\mathfrak{N}_{H, K}$. First assume that $x, y \in K \backslash N_{K}(H)$. Then there exists $h_{1}, h_{2} \in H \backslash H_{K}$ such that $h_{1}^{x}, h_{2}^{y} \notin H$. If either x and h_{2} are adjacent, or y and h_{1} are adjacent, then $d(x, y)=2$ and we are done. Thus we may assume that $h_{2}^{x}, h_{1}^{y} \in H$. But then $h_{1} h_{2} \in H \backslash H_{K}$ is adjacent to both x, y and $d(x, y)=2$. Now assume that x, y belong to different parts of $\mathfrak{N}_{H, K}$, say $x \in H \backslash H_{K}$ and $y \in K \backslash N_{K}(H)$. Let $k \in K \backslash N_{K}(H)$ be a vertex adjacent to x. Then $d(x, y) \leq d(y, k)+1=3$. Finally suppose that $x, y \in H \backslash H_{K}$ and x, y be adjacent to vertices $u, v \in K \backslash N_{K}(H)$, respectively. Then $d(x, y) \leq d(u, v)+2 \leq 4$ and the proof is complete.

By the above lemma the relative non-normal graph is connected. It is easy to see that $\operatorname{diam}\left(\mathfrak{N}_{H, K}\right)=4$ if and only if there exist two vertices x, y in a same part of $\mathfrak{N}_{H, K}$, which have no common neighbor. Let $\operatorname{diam}\left(\mathfrak{N}_{H, K}\right)=4$ and h_{1}, h_{2} be two vertices in a same part such that have no common neighbor. By the proof of Theorem 3.2, h_{1} and h_{2} must be in part $H \backslash H_{K}$. Then $(K \backslash$ $\left.A\left(K, H, h_{1}\right)\right) \cap\left(K \backslash A\left(K, H, h_{2}\right)\right)=\emptyset$. Hence $K=A\left(K, H, h_{1}\right) \cup A\left(K, H, h_{2}\right)$, as required. The converse is clear. Therefore $\operatorname{diam}\left(\mathfrak{N}_{H, K}\right)=4$ if and only if $K=A\left(K, H, h_{1}\right) \cup A\left(K, H, h_{2}\right)$ for some $h_{1}, h_{2} \in H \backslash H_{K}$.

Theorem 3.3. If $|H|>2$, then the girth of $\mathfrak{N}_{H, K}$ is 4 .
Proof. Since $\mathfrak{N}_{H, K}$ is a bipartite graph and by Lemma $3.1, \mathfrak{N}_{H, K}$ has a cycle we have that $\operatorname{gr}\left(\mathfrak{N}_{H, K}\right) \geq 4$. Hence we have to show that $\mathfrak{N}_{H, K}$ indeed has a cycle of length four. If $\left(H \backslash H_{K}\right)^{2} \neq 1$ such that $\left(H \backslash H_{K}\right)^{2}=\left\{a^{2}: a \in\right.$ $\left.H \backslash H_{K}\right\}$, then there exist $a \in H \backslash H_{K}$ such that $a \neq a^{-1}$. By Lemma 3.1, a is not pendant then there exist $x, y \in K \backslash N_{K}(H)$ such that a is adjacent to x and y. Then the elements a, a^{-1}, x, y induce a cycle of length 4 and hence the girth of $\mathfrak{N}_{H, K}$ is 4 . Suppose $\left(H \backslash H_{K}\right)^{2}=1$. By Lemma 3.2, $\operatorname{diam}\left(\mathfrak{N}_{H, K}\right) \leq 4$. If $\operatorname{diam}\left(\mathfrak{N}_{H, K}\right)=2$, then $\mathfrak{N}_{H, K}$ is complete bipartite graph and girth of $\mathfrak{N}_{H, K}$ is 4. If $\operatorname{diam}\left(\mathfrak{N}_{H, K}\right)=3$, then for every $a, b \in H \backslash H_{K}$, $d(a, b)=2$. Let $x, y \in K \backslash N_{K}(H)$ and $a^{x} \notin H, a^{y} \in H, b^{y} \notin H$ and $b^{x} \in H$, in this case since $a \neq b=b^{-1}$, then $a b \neq a$ and $a b \neq b$, hence $d(b, a b)=2$ then there exist $z \in K \backslash N_{K}(H)$ such that z is adjacent to b and $a b$, also $a b$ and y are adjacent and the elements $b, a b, y$ and z induce a cycle of length 4. Finally if $\operatorname{diam}\left(\mathfrak{N}_{H, K}\right)=4$, in this case $a, b \in H \backslash H_{K}$ such that $d(a, b)=4$. Let $x, y \in K \backslash N_{K}(H)$ and $c \in H \backslash H_{K}$ such that $a^{x} \notin H, b^{y} \notin H, a^{y} \in H, b^{x} \in H$, $c^{x} \notin H$ and $c^{y} \notin H$. In this case $a b$ is adjacent to x and y, then the elements $c, x, a b$ and y induce a cycle of length 4 and hence the girth of $\mathfrak{N}_{H, K}$ is 4 .

Let H and K be two subgroups of G. H is called a TI-subgroup with respect to K if $H \cap H^{k}=1$ for all $k \in K \backslash N_{K}(H)$. For the following theorem and two corollaries, we assumed that H_{K} is a normal subgroup of K.
Theorem 3.4. $\operatorname{diam}\left(\mathfrak{N}_{H, K}\right)=2$ if and only if $\mathfrak{N}_{H, K}$ is a complete bipartite graph if and only if H / H_{K} is a TI-subgroup with respec to K / H_{K}.

Proof. It is obvious that $\operatorname{diam}\left(\mathfrak{N}_{H, K}\right)=2$ if and only if $\mathfrak{N}_{H, K}$ is a complete bipartite graph. Let $\bar{H}=H / H_{K}$ and $\bar{K}=K / H_{K}$. If \bar{H} is a TI-subgroup with respec to \bar{K} and $\bar{k} \in \bar{K} \backslash N_{\bar{K}}(\bar{H})$, then $\bar{H} \cap \bar{H}^{\bar{k}}=\overline{1}$. So \bar{k}^{-1} is adjacent to \bar{h} for all $\bar{h} \in \bar{H} \backslash\{\overline{1}\}$ that is $\bar{h}^{\bar{k}^{-1}} \notin \bar{H}$ for all $\bar{k} \in \bar{K} \backslash N_{\bar{K}}(\bar{H})$ and $\bar{h} \in \bar{H} \backslash\{\overline{1}\}$. Then $h^{k^{-1}} \notin H$ for all $k \in K \backslash N_{K}(H)$ and $h \in H \backslash H_{K}$. So $\mathfrak{N}_{H, K}$ is a complete bipartite graph. The converse is similar.

A subgroup K of G is called a Krutik group if $A(K, H, h)$ is a subgroup of K for each subgroup H of G and element $h \in H$. For instance, take $G=S_{4}$,
$K=S_{3}$ and $H=\langle(1234)\rangle$. Then $N_{K}(H)=\{1,(13)\}, H_{K}=\{1\}$ and $\mathfrak{N}_{H, K}$ is isomorphic to $K_{3,4}$, so H is a TI-subgroup with respect to K also K is a Krutik group.
In the following two corollaries we consider the case where the diameter is 3 .
Corollary 3.5. If K is a Krutik subgroup of G, then $\operatorname{diam}\left(\mathfrak{N}_{H, K}\right)=3$ for all non-normal subgroup H of G such that H / H_{K} is not a TI-subgroup with respect to K / H_{K}.

Corollary 3.6. If H is a cyclic subgroup of G such that H / H_{K} is not a TI-subgroup with respect to K / H_{K}, then $\operatorname{diam}\left(\mathfrak{N}_{H, K}\right)=3$.

Proof. It is straightforward to see that $A(K, H, h)=N_{K}(\langle h\rangle)$ is a subgroup of K for each $h \in H \backslash H_{K}$. Hence by Lemma 3.4, we have $\operatorname{diam}\left(\mathfrak{N}_{H, K}\right)=3$.

4. Planarity and Outer Planarity

This section is devoted to a determination of planarity of relative non-normal graphs. Except for few possible cases, we show that the relative non-normal graphs are not planar. We begin with some elementary lemmas.

Lemma 4.1. If H is a cyclic subgroup of G, then $\mathfrak{N}_{H, K}$ has a subgraph isomorphic to $K_{\varphi(|H|),|K|-\left|N_{K}(H)\right|}$, where φ is the Euler's totient function. In particular if H is a cyclic group of order p, then $\mathfrak{N}_{H, K}$ is isomorphic to $K_{p-1,|K|-\left|N_{K}(H)\right|}$.
Proof. The result follows from the fact that the generators of H are adjacent to all elements of $K \backslash N_{K}(H)$.

Lemma 4.2. If H_{K} is a maximal subgroup of H, then $\mathfrak{N}_{H, K}$ is isomorphic to $K_{|H|-\left|H_{K}\right|,|K|-\left|N_{K}(H)\right|}$.

Proof. Every element of $H \backslash H_{K}$ is adjacent to all elements of $K \backslash N_{K}(H)$. Suppose on the contrary that there exist $h \in H \backslash H_{K}$ such that h is not adjacent to some element $k \in K \backslash N_{K}(H)$. Let $N=\left\langle H_{K} \cup\langle h\rangle\right\rangle$. Then we show that $N \neq H$. Since $k \in K \backslash N_{K}(H)$ there exist $h_{0} \in H \backslash H_{K}$ such that $h_{0}^{k} \notin H$. If $h_{0} \in\langle h\rangle$ or $h_{0} \in N$ so $h_{0}^{k} \in H$, which is a contradiction. So $h_{0} \in H \backslash N$ and $N \neq H$ which contradicts maximality of H_{K} in H.

Lemma 4.3. If $|H|>2, a \in H \backslash H_{K}, a^{2} \neq 1$ and $b \in H \backslash H_{K}$ not adjacent to at least three vertices adjacent to a, then $\mathfrak{N}_{H, K}$ is not planar.

Proof. Lemma 3.1 implies that the degree of every vertex is at least 2. Also for every $h \in H \backslash H_{K}$ and $k \in K \backslash N_{K}(H)$, $\operatorname{deg}(h)>\operatorname{deg}(k)$. Let x, y, z be neighbors of a but not b, then the subgraph of $\mathfrak{N}_{H, K}$ induced by $a, a^{-1}, a b, x, y, z$ is isomorphic to $K_{3,3}$, which contradicts planarity of $\mathfrak{N}_{H, K}$ by Kuratowski theorem, (see [6]).

Lemma 4.4. If $\left|H \backslash H_{K}\right|>2$, where H is non-cyclic, and $\left(H \backslash H_{K} \cap N_{K}(H)\right)^{2} \neq$ $\{1\}$, then $\mathfrak{N}_{H, K}$ is not planar.

Proof. Since $\left(H \backslash H_{K} \cap N_{K}(H)\right)^{2} \neq\{1\}$, there exists an element $a \in(H \backslash$ $\left.H_{K} \cap N_{K}(H)\right)$ such that $a \neq a^{-1}$. By Lemma $3.1 \operatorname{deg}(a)>2$ and there exists $x \in K \backslash N_{K}(H)$ such that a and x are adjacent. Also a^{-1} and x are adjacent. Since $a \in N_{K}(H) \leq K$ then $x a^{-1} \in K \backslash N_{K}(H)$. Suppose x is adjacent to all vertices of $H \backslash H_{K}$. As H is not cyclic and $\left|H \backslash H_{K}\right| \geq 3$, there exists $b \in H \backslash H_{K}$ such that $a^{-1} \neq b \neq a$ then it is adjacent to $x, x a$ and $x a^{-1}$. But the subgraph of $\mathfrak{N}_{H, K}$ induced by elements $a, a^{-1}, b, x, x a$ and $x a^{-1}$ is isomorphic to $K_{3,3}$ and $\mathfrak{N}_{H, K}$ is not planar. If there exist $h \in H \backslash H_{K}$ such that $h^{x} \in H$, then x and $a h$ are adjacent so in this case $a h$ is adjacent to $x a$ and $x a^{-1}$, hence the subgraph of $\mathfrak{N}_{H, K}$ induced by elements $a, a^{-1}, a h, x, x a, x a^{-1}$ is isomorphic to $K_{3,3}$ and again $\mathfrak{N}_{H, K}$ is not planar.

Lemma 4.5. Let G be a finite group and H, K be two subgroups of G such that $\mathfrak{N}_{H, K}$ is planar, then $|H| \leq 11$.

Proof. First we observe that for every planar graph X with at least three vertices, we have $e \leq 3 v-6$, where e and v denote the number of edges and vertices of X, respectively, (see [5]). Hence $\left|E\left(\mathfrak{N}_{H, K}\right)\right| \leq 3\left|V\left(\mathfrak{N}_{H, K}\right)\right|-6$. Also Corollary 2.6 of [8] can be generalized for the relative normality degree of H in K. Thus $P_{N}(H, K) \leq \frac{3}{4}$. Now we have

$$
\left|E\left(\mathfrak{N}_{H, K}\right)\right|=|H||K|\left(1-P_{N}(H, K)\right) \geq|H||K|\left(1-\frac{3}{4}\right)=\frac{1}{4}|H||K|
$$

Hence

$$
\begin{aligned}
\frac{1}{4}|H||K| & \leq 3\left(|H|-\left|H_{K}\right|+|K|-\left|N_{K}(H)\right|\right)-6 \\
& \leq 3(|H|-1+|K|-|H|)-6=3|K|-9
\end{aligned}
$$

which implies that

$$
|H| \leq 12-\frac{36}{|K|}<12
$$

Therefore $|H| \leq 11$.
Now by using the rigth coset H_{K} in H and $N_{K}(H)$ in K we show that the relative non-normal graphs are not planar in the following two cases.

Lemma 4.6. Vertices in the same coset of part $K \backslash N_{K}(H)$ or $H \backslash H_{K}$ have the same neighbour.

Proof. Suppose that $x, y \in k N_{K}(H)$ which $k \in K$ and $h \in H \backslash H_{K}$ is adjacent to x. We show that h is adjacent to y, too. Suppose that $x=k n_{1}$ and $y=k n_{2}$ that $n_{1}, n_{2} \in N_{K}(H)$. As $h^{x}=h^{k n_{1}} \notin H$, we have $h^{k} \notin H$, so $h^{y}=h^{k n_{2}} \notin H$. Similarly, we can show that vertices in same coset of $H \backslash H_{K}$ have the same neighbours.

Lemma 4.6 verifies that each right coset of $K \backslash N_{K}(H)$ and each rigth coset of $H \backslash H_{K}$ in $\mathfrak{N}_{H, K}$ form a complete bipartite subgraph or empty bipartite subgraph.

Lemma 4.7. If $\left|H_{K}\right| \geq 3$, then $\mathfrak{N}_{H, K}$ is not planar.
Proof. Since $H \backslash H_{K}$ is a union of rigth cosets of H_{K}, then $\left|H \backslash H_{K}\right| \geq 3$. Let $h \in H$. Since the coset $h H_{K}$ has at least three elements, there exist $h_{1}, h_{2}, h_{3} \in h H_{K}$. Let $x \in K$ and $x_{1} \in x N_{K}(H)=\left\{x_{1}, x_{2}, \ldots, x_{\left|N_{K}(H)\right|}\right\}$ be a neighbor of h_{1}, where $\left|N_{K}(H)\right| \geq|H| \geq\left|H \backslash H_{K}\right| \geq 3$. So by Lemma 4.6, the elements $h_{1}, h_{2}, h_{3}, x_{1}, x_{2}, x_{3}$ induce a subgraph of $\mathfrak{N}_{H, K}$ that is isomorphic to $K_{3,3}$ and so $\mathfrak{N}_{H, K}$ is not planar.
Lemma 4.8. If $\left|H \backslash H_{K}\right| \geq 4$, then $\mathfrak{N}_{H, K}$ is not planar.
Proof. By Lemma 3.1, degree of every vertex is at least 2, also $\operatorname{deg}\left(h_{i}\right)>$ $\operatorname{deg}\left(k_{i}\right) \geq 2$ for all $h_{i} \in H \backslash H_{K}$ and $k_{i} \in K \backslash N_{K}(H)$, and $\left|N_{K}(H)\right| \geq|H| \geq$ $\left|H \backslash H_{K}\right| \geq 4$. Let $h_{1} \in H \backslash H_{K}$, there exist vertices $k_{1}, k_{2}, k_{3} \in k N_{K}(H)$ such that they are adjacent to h_{1}. Since $\operatorname{deg}\left(k_{1}\right) \geq 2$, then there exist $h_{2} \in H \backslash H_{K}$ such that k_{1} is adjacent to $h_{2} .\left|H \backslash H_{K}\right| \geq 4$, let $h_{3}, h_{4} \in H \backslash H_{K}$. If h_{3} (or similarly h_{4}) is adjacent to k_{1}, then by Lemma 4.6, the subgraph of $\mathfrak{N}_{H, K}$ induced by $h_{1}, h_{2}, h_{3}, k_{1}, k_{2}, k_{3}$ that is isomorphic to $K_{3,3}$ and $\mathfrak{N}_{H, K}$ is not planar. If h_{3} and h_{4} are not adjacent to k_{1} and $h_{1} h_{3} \neq h_{2}$, then $h_{1} h_{3}$ is adjacent to k_{1} and in this case by Lemma 4.6, the elements of $h_{1}, h_{2}, h_{1} h_{3}, k_{1}, k_{2}, k_{3}$, induce a subgraph of $\mathfrak{N}_{H, K}$ that is isomorphic to $K_{3,3}$ and $\mathfrak{N}_{H, K}$ is not planar, otherwise we may replace $h_{1} h_{3}$ by $h_{1} h_{4}$ and the proof is complete.

Now, using of the previous results will show that with exception of a few possible cases, the relative non-normal graphs are not outer planar.

Lemma 4.9. If $|H|>2$ and H is a cyclic group, then $\mathfrak{N}_{H, K}$ is not outer planar.

Proof. By Lemma 4.1, $\mathfrak{N}_{H, K}$ has a subgraph isomorphic to $K_{\varphi(|H|),|K|-\left|N_{K}(H)\right|}$. As $|H| \geq 3$, we have $\varphi(|H|) \geq 2$ and $\left|H \backslash H_{K}\right| \geq 2,|K|-\left|N_{K}(H)\right|>\left|H \backslash H_{K}\right| \geq$ 2. Then $|K|-\left|N_{K}(H)\right| \geq 3$ and $\mathfrak{N}_{H, K}$ has a subgraph isomorphic to $K_{2,3}$ and so $\mathfrak{N}_{H, K}$ is not outer planar, (see [4]).

Lemma 4.10. If $|H|>2$ and H_{K} is a maximal subgroup of H, then $\mathfrak{N}_{H, K}$ is not outer planar.

Proof. By Lemma 3.1, $\mathfrak{N}_{H, K}$ is not star graph, then $\left|H \backslash H_{K}\right| \geq 2$, also H_{K} is amaximal subgroup of H and by Lemma 4.2 and $\mathfrak{N}_{H, K}$ is isomorphic to $K_{|H|-\left|H_{K}\right|,|K|-\left|N_{K}(H)\right|}$. Also $|K|-\left|N_{K}(H)\right|>\left|H \backslash H_{K}\right| \geq 2$, deduce that $|K|-\left|N_{K}(H)\right| \geq 3$ and $\mathfrak{N}_{H, K}$ has a subgraph isomorphic to $K_{2,3}$ and therefore $\mathfrak{N}_{H, K}$ is not outer planar, (see [4]).
Lemma 4.11. If $|H|>2$ and $\left|H \backslash H_{K}\right|^{2} \neq 1$, then $\mathfrak{N}_{H, K}$ is not outer planar.

Proof. Since $|H|>2$ by Lemma 3.1, degree of every vertex is at least 2 and for every $h \in H \backslash H_{K}$ and $x \in K \backslash N_{K}(H)$, $\operatorname{deg}(h)>\operatorname{deg}(x)$, then every vertex in $H \backslash H_{K}$ has degree at least 3. Let $a \in H \backslash H_{K}$ and $a \neq a^{-1}$, then there exist $x, y, z \in K \backslash N_{K}(H)$ such that a adjacent to x, y, z. Thus the subgraph of $\mathfrak{N}_{H, K}$ induced by the elements a, a^{-1}, x, y, z is isomorphic to $K_{2,3}$ and $\mathfrak{N}_{H, K}$ is not outer planar (see [4]).

Finally, one can also see that if $|H| \geq 2$ or $\left|H \backslash H_{K}\right| \geq 2$, then $\mathfrak{N}_{H, K}$ is not outer planar.

Acknowledgments

The authors wish to thank the referee for some helpful comments and suggestions.

References

1. A. Abdollahi, Engel graph associated with a group, J. Algebra, 318 (2007), 680-691.
2. A. Abdollahi, S. Akbari, H. R. Maimani, Non-commuting graph of a group, J. Algebra, 298 (2006), 468-492.
3. A. Abdollahi, A. Mohammadi Hassanabadi, Non-cyclic graph of a group, Comm. in Algebra, 35 (2007), 2057-2081.
4. M. Bodirsky, O. Gimenez, M. Kang and M. Noy, Enumeration and limit laws of seriesparallel graphs, European Journal of Combinatorics, 28, (2005), 2091-2105.
5. J. A. Bondy, J. S. R. Murty, Graph Theory with Applications, Elsevier, (1977).
6. G. Chartrand and P. Zhang, Chromatic Graph Theory, Taylor \& Francis, (2009).
7. A. Erfanian, M. Farrokhi D.G. and B. Tolue, Non-normal graphs of finite groups, J. Algebra Appl, 12, (2013).
8. F. Saeedi, M. Farrokhi D. G. and S. H. Jafari, Subgroup normality degrees of finite groups I, Arch. Math., 96, (2011), 215-224.

[^0]: * Corresponding Author

 Received 03 November 2017; Accepted 12 July 2019
 ©2021 Academic Center for Education, Culture and Research TMU

