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Abstract. In this paper, we present a nonmonotone trust-region algo-
rithm for unconstrained optimization. We first introduce a variant of the
nonmonotone strategy proposed by Ahookhosh & Amini [1] and incor-
porate it into the trust-region framework to construct a more efficient
approach. Our new nonmonotone strategy combines the current func-
tion value with the maximum function values in some prior successful
iterates. For iterates far away from the optimizer, we give a very strong
nonmonotone strategy. In the vicinity of the optimizer, we have a weaker
nonmonotone strategy. It leads to a medium nonmonotone strategy when
iterates are not far away from or close to the optimizer. Theoretical anal-
ysis indicates that the new approach converges globally to a first-order
critical point under classical assumptions. In addition, the local con-
vergence is studied. Extensive numerical experiments for unconstrained
optimization problems are reported showing that the new algorithm is
robust and efficient.
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1. Introduction

This paper considers the unconstrained nonlinear optimization problem

min f(x)
s.t. x ∈ Rn,

(1.1)

where f : Rn → R is a continuously differentiable function. Many techniques
are available to solve the problem (1.1). Two important classes of these methods
are line-search methods and trust-region methods. In the simplest form, line
search methods produce the new point xk+1 := xk + αkdk for where αk is a
step-size and dk is a search direction, whereas trust-region methods generate a
trial step dk by computing an exact or an approximate solution of the following
subproblem

min mk(xk + d) := fk + gT
k d + 1

2 dT Bkd

s.t. d ∈ Rn and ∥d∥ ≤ δk.
(1.2)

Here ∥·∥ denotes the Euclidean norm, fk := f(xk), gk := ∇f(xk), Bk is Hessian
Gk := ∇2f(xk) or its symmetric approximation, and δk is a trust-region radius.
The ratio

rk := fk − f(xk + dk)
mk(xk) − mk(xk + dk)

, (1.3)

plays a key role in the traditional trust-region framework. The model matches
the original problem better at the current iterate xk whenever rk is sufficiently
close to 1, which means there is a good agreement between the model and
the objective function and we can expand the trust-region for the next step.
Otherwise, there is not a good agreement between the model and the objective
function, so we shrink the trust-region and the subproblem (1.2) is solved in
the reduced region, cf. [31].

It is well-known that the traditional optimization approaches generally need
to use a globalization technique such as line search or trust-region to guarantee
the global convergence of the algorithm. These globalization techniques mostly
enforce a monotonicity fk+1 ≤ fk to the produced sequence of the objective
function values, usually leading to slow convergence, see [1, 2, 5, 6, 11, 14, 17,
18, 19, 21, 23, 35]. To avoid this drawback of globalization techniques, Grippo
et al. [17] introduced a nonmonotone strategy for unconstrained optimization
problems. In particular, they modified the Armijo rule as

f(xk + αkdk) ≤ fl(k) + δαkgT
k dk, (1.4)

where δ ∈ (0, 1) and

fl(k) = max
0≤j≤n(k)

{fk−j}, k ∈ N0 := N ∪ {0}, (1.5)

in which n(0) = 0 and 0 ≤ n(k) ≤ min{n(k − 1) + 1, N} with N ≥ 0. The
theoretical and numerical results show that the new technique has remarkable
positive effects on Armijo-type line searches to get a faster global convergence
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especially for highly nonlinear problems. These excellent results attract many
researchers to investigate more about the effects of these strategies in a wide
variety of optimization procedures, see [1, 5, 6, 35]. As a prominent example,
the first use of nonmonotone techniques in trust-region framework was intro-
duced and analyzed by Deng et al. in [11]. Recently, Ahookhosh & Amini
[1] and Ahookhosh et al. [5] introduced a new nonmonotone strategy and
applied it to both the trust-region and line search schemes for unconstrained
optimization. These techniques employ the nonmonotone term

Rk = ηkfl(k) + (1 − ηk)fk, (1.6)

where ηk ∈ [ηmin, ηmax], ηmin ∈ [0, 1) and ηmax ∈ [ηmin, 1]. It is clear that the
nonmonotonicity of Rk can be adjusted by selecting an adaptive process for ηk

such that it makes Rk more relaxed for practical usage.
Although the nonmonotone technique (1.6) has good convergence results, it

suffers from some difficulties as follow:
• Whenever ηk is close to 1, for some k ∈ N0, and iterates are far away

from the optimizer, Rk augments the effect of fl(k) and can not prevent
resolving the trust-region subproblem;

• Whenever iterates are not close to the optimizer, it is possible for the
sequence {ηk}

k≥0 to quickly converge to a very small positive number.
This means that Rk augments the effect of fk and may lead to reject
the current trial step;

• Regarding the above disadvantages, computational cost for solving the
problem will be increased.

In this paper, we propose a new method to solve the problem (1.1), based
on a new nonmonotone technique, and establish its global convergence to first-
order critical points together with local superlinear and quadratic convergence
rates. The preliminary numerical results exhibit the efficiency of the proposed
method for unconstrained optimization problems.

This work is organized as follows. In Section 2, we describe a new nonmono-
tone trust-region algorithm and explain some of its properties. In Section 3,
we prove that the proposed algorithm is globally convergent. The numerical
results are reported in Section 4. Finally, some conclusions are expressed in
Section 5.

2. Motivation and Algorithmic Structure

In this section, a novel nonmonotone trust-region strategy is presented. After
proposing a new nonmonotone technique, we incorporate it into trust-region
framework to construct a more effective procedure to solve the problem (1.1).

It is well-known that the best convergence results are obtained by stronger
nonmonotone strategy whenever iterates are far away from the optimizer and
weaker nonmonotone strategy for iterates close to the optimizer, see [1, 2, 3, 4,
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5, 6, 7, 35]. We believe that the nonmonotone strategy (1.6) does not show an
appropriate behavior when iterates are far away from the optimizer because it
does not permit the parameter ηk to be greater than 1. Therefore, we define

R̂k := η̂kfl(k) + (1 − η̂k)fk, (2.1)

where

η̂k :=

 ηk

∣∣∣fl(k)

fk

∣∣∣, if fk ̸= 0,

ηk, otherwise,
(2.2)

ηk ∈ [ηmin, ηmax], ηmin ∈ [0, 1) and ηmax ∈ [ηmin, 1]. On the basis of this
nonmonotone strategy, we can replace the ratio (1.3) by

r̂k := R̂k − f(xk + dk)
mk(xk) − mk(xk + dk)

, (2.3)

which has three advantages:
• Whenever iterates are far away from the optimizer, for some k ∈ N0,

the ratio |fl(k)/fk| may be greater than 1, i.e., some elements of {η̂k}
k≥0

may be greater than 1, too. Hence, the elements of {R̂k}
k≥0 , for some

k ∈ N0, may be greater than those of {fl(k)}k≥0 . Consequently, if iter-
ates are far away from the optimizer, the sequence {R̂k}

k≥0 , for some
k ∈ N0, provides a very stronger nonmonotone strategy that can aug-
ment the effect of fl(k).

• Whenever iterates are close to the optimizer, the ratio |fl(k)/fk|, for
some k ∈ N0, may be smaller than 1, i.e., the elements of {η̂k}

k≥0 , for
some k ∈ N0, may be smaller than 1, too. Therefore, the elements
of {R̂k}

k≥0 , for some k ∈ N0, may be smaller than those of {Rk}
k≥0

providing a weaker nonmonotone strategy.

• Whenever iterates are not very close to the optimizer, ηk may lead to
η̂k < 1, for some k ∈ N0. Consequently, the elements of {R̂k}

k≥0 locate
between the elements of {Rk}

k≥0 and {fl(k)}k≥0 , for some k ∈ N0, and
we obtain a medium nonmonotone strategy.

• If iterates are close to the optimizer, {η̂k}
k≥0 , for some k ∈ N0, is equal

to {ηk}
k≥0 , i.e., R̂k is equal to Rk, for some k ∈ N0. Therefore, we

obtain a weaker nonmonotone strategy that can augment the effect of
fk when iterates are close to the optimizer.

On the basis of the above considerations, the algorithmic framework of our
approach can be outlined as follows:

In Algorithm 1, if r̂k ≥ µ3 > 0, the iterates are called very successful, leading
to δk+1 ≥ δk. The iterates are called successful if r̂k ≥ µ2 and the trust-region
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(Algorithm 1: Nonmonotone trust-region algorithm (NMTRN))
(S.0) An initial point x0 ∈ Rn, a symmetric positive-definite matrix

B0 ∈ Rn×n, 0 < η0 < 1, 0 < µ1 ≤ µ2 ≤ µ3 < 1, 0 < γ1 ≤ γ2 < 1,
γ3 ≥ 1, N > 0 and ϵ > 0 and set n(0) := 0; R̂0 := f0; k := 0.

(S.1) If ∥gk∥ ≤ ϵ holds, STOP.
(S.2) Specify the trial point dk by solving the subproblem (1.2).
(S.3) Determine the trust-region ratio r̂k using (2.3).

If r̂k ≥ µ1 holds, set xk+1 := xk + dk; otherwise, set xk+1 := xk.
(S.4) Select n(k + 1) in [0, min{n(k) + 1, N}], fl(k+1) using (1.5), ηk+1 by

an adaptive formula, generate η̂k+1 using (2.2) and R̂k+1 using (2.1).
(S.5) Update the radius of trust-region by using

δk+1 :=


γ1δk, if r̂k < µ1
γ2δk, if r̂k ∈ [µ1, µ2)
δk, if r̂k ∈ [µ2, µ3)
min{γ3δk, δ0}, if r̂k ≥ µ3.

(2.4)

(S.6) Update Bk+1 by a quasi-Newton formula.
(S.7) Set k := k + 1, and go to (S.1).

radius does not change. Moreover, the iterates for which r̂k ≥ µ1 are called
successful, so that δk+1 ≤ δk. Otherwise, the iterates for which r̂k < µ1 are said
to be unsuccessful, so that δk+1 ≤ δk. For cases when iterates are successful or
very successful, the new point is generated by xk+1 := xk + dk; otherwise, we
set xk+1 := xk, cf. [31].

3. Convergence Theory

In this section, we will investigate the global and local quadratic convergence
results of the proposed algorithm given in Section 2. We here consider the
following assumptions:
(H0) mk(xk) − mk(xk + dk) ≥ β∥gk∥ min

{
δk,

∥gk∥
∥Bk∥

}
, ∀ k.

(H1) f ∈ C2 and has a lower bound on the level set

L(x0) :=
{

x ∈ Rn | f(x) ≤ f(x0)
}

.

(H2) There exists a constant M > 0 such that ∥Bk∥ ≤ M for all k.
(H3) There exists a constant σ > 0 such that the trial step dk satisfies ∥dk∥ ≤
σ∥gk∥.

Suppose that the objective function f is a twice continuously differentiable
function and the level set L(x0) is bounded. Then, (H1) implies that ∥∇2f(x)∥
is uniformly continuous and bounded above on the open bounded convex set
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Ω, containing L(x0). As a result, there exists a constant Lg > 0 such that
∥∇2f(x)∥ ≤ Lg, for all x ∈ Ω. Therefore, using the mean value theorem, we
can conclude that, for all x, y ∈ Ω,

∥g(x) − g(y)∥ ≤ Lg∥x − y∥,

which leads to this fact that the objective function f is Lipschitz continuous in
the open bounded convex set Ω.

Lemma 3.1. Suppose that (H1) and (H2) hold. Then, there exists a constant
κ > 0 such that

|mk(xk + dk) − f(xk + dk)| ≤ κ∥dk∥2.

Proof. See [10, 13]. □

Consider the following sets

I1 := {k ∈ N0 | η̂k ∈ (0, 1)},

I2 := {k ∈ N0 | η̂k ≥ 1 and fl(k) ≥ fk+1},

I3 := {k ∈ N0 | η̂k ≥ 1 and fl(k) < fk+1},

that have a key role for proving the next lemmas.

Lemma 3.2. Suppose that (H1) holds and the sequence {xk}k≥0 is generated
by Algorithm 1. Then, the following statements are true:
(a) If fk ̸= 0 and fl(k) > 0, then Rk ≤ R̂k < fl(k), for k ∈ I1.
(b) If fk ̸= 0 and fl(k) > 0, then R̂k ≥ fl(k), for k ∈ I2 ∪ I3.
(c) If fk < 0 and fl(k) < 0, fk ≤ R̂k ≤ Rk, for k ∈ I1

(d) If fk = 0, then R̂k = Rk.
(e) If fl(k) = 0, then R̂k = 0.

Proof. (a) Suppose that fk ̸= 0 and fl(k) > 0. Then, we have
∣∣∣fl(k)

fk

∣∣∣ ≥ 1 and
consequently η̂k ≥ ηk. This inequality, together with fk ≤ fl(k), for k ∈ I1,
gives

Rk = ηk(fl(k)−fk)+fk ≤ η̂k(fl(k)−fk)+fk = R̂k = (1−η̂k)(fk−fl(k))+fl(k) < fl(k).

(b) Assume that fk ̸= 0 and fl(k) > 0. From (2.1) and fk ≤ fl(k), for k ∈ I2∪I3,
we obtain

R̂k = η̂kfl(k) + (1 − η̂k)fk = (η̂k − 1)fl(k) + (1 − η̂k)fk + fl(k)

= (η̂k − 1)(fl(k) − fk) + fl(k) ≥ fl(k).

(c) Assume that fk < 0 and fl(k) < 0. Then, we have
∣∣∣fl(k)

fk

∣∣∣ ≤ 1 and conse-
quently η̂k ≤ ηk. Therefore, this inequality, along with fk ≤ fl(k), for k ∈ I1,
gives

fk ≤ η̂k(fl(k) − fk) + fk = R̂k ≤ ηk(fl(k) − fk) + fk = Rk.
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For (d) and (e), the proof is clear. □

Lemma 3.3. Suppose that (H0)-(H3) hold and the sequence {xk}k≥0 is gen-
erated by Algorithm 1.

(a) {fl(k)}k∈I1
is a convergent subsequence of {fk}k≥0 and {xk}

k∈I1
⊂

L(x0).
(b) If I1 is not finite, then lim

k→∞,k∈I1
fl(k) = lim

k→∞,k∈I1
fk.

(c) If I1 is not finite, then lim
k→∞,k∈I1

R̂k = lim
k→∞,k∈I1

fk.

Note that

Proof. (a) Assume that xk+1 is accepted by Algorithm 1. This fact, along with
Lemma 3.2, implies

fl(k) − fk+1 > R̂k − fk+1 ≥ µ1(mk(xk) − mk(xk + dk)) > 0,

leading to
fk+1 ≤ fl(k), ∀ k ∈ I1. (3.1)

To prove that the subsequence {fl(k)}k∈I1
is decreasing, we consider the two

following cases:
Case 1. If k ≥ N , then we have n(k+1) ≤ n(k)+1 for all k ∈ I1. Therefore,

(3.1) results in

fl(k+1) = max
0≤j≤n(k+1)

{fk+1−j} ≤ max{ max
0≤j≤n(k)

{fk−j}, fk+1} = max{fl(k), fk+1} = fl(k),

(3.2)
for all k ∈ I1.

Case 2. If k < N , then n(k) = k, for all k ∈ I1. By using fk ≤ f0, we get

fl(k) = f0, ∀k ∈ I1. (3.3)

We show that xk ∈ L(x0), for all k ∈ I1. The proof is given by the induction.
The definition of fl(k) indicates that fl(0) = f0. Next, assume that xk ∈ L(x0),
for some k ∈ I1 (the induction hypothesis), holds. By using the induction
hypothesis and the decreasing sequence fl(k), we get

fk+1 ≤ fl(k+1) ≤ fl(k) ≤ f0,

which shows that xk+1 ∈ L(x0). Thus, the subsequence {xk}
k∈I1

is contained
in L(x0).

Finally, (H1) and xk ∈ L(x0), for all k ∈ I1, imply that the subsequence
{fl(k)}k∈I1

is bounded. Thus, the subsequence {fl(k)}k∈I1
is convergent.

(b) The proof can be done in the same way as Lemma 7 in [1].
(c) By fk ≤ R̂k ≤ fl(k) and lim

k→∞,k∈I1
fl(k) = lim

k→∞,k∈I1
fk, the result is valid.

□

Lemma 3.4. Suppose that (H0)-(H3) hold and the sequence {xk}k≥0 is gen-
erated by Algorithm 1.
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(a) {fl(k)}k∈I2
is a convergent subsequence of {fk}k≥0 and {xk}

k∈I2
⊂

L(x0).
(b) If I2 is not finite, then lim

k→∞,k∈I2
fl(k) = lim

k→∞,k∈I2
fk.

(c) If I2 is not finite, then lim
k→∞,k∈I2

R̂k = lim
k→∞,k∈I2

fk.

Proof. (a) Assume that xk+1 is accepted by Algorithm 1. Hence, we have

R̂k − fk+1 ≥ µ1(mk(xk) − mk(xk + dk)) > 0,

implying
fk+1 ≤ R̂k, ∀ k ∈ I2.

Now, similar to Lemma 3.3, we can simply obtain that the subsequence {fl(k)}k∈I2

is convergent and {xk}
k∈I2

⊂ L(x0) since fl(k) ≥ fk+1, for k ∈ I2.
(b) Since xk+1 is accepted by Algorithm 1, we obtain

R̂k − fk+1 = η̂kfl(k) + (1 − η̂k)fk − fk+1

= (η̂k − 1)(fl(k) − fk) + fl(k) − fk+1

≥ µ1(mk(xk) − mk(xk + dk)) > 0. (3.4)

By the definition of {fl(k)}k≥0, it is clear that l(k) ≤ k. Hence l(k) − 1
can be considered as a successful iterate preceding kth successful iterate. By
substituting k by l(k) − 1 in (3.4), we obtain

(η̂l(k)−1−1)(fl(l(k)−1)−fl(k)−1)+fl(l(k)−1)−fl(k) ≥ µ1(mk(xl(k)−1)−mk(xl(k))) > 0.

By recalling item (a) and taking limits from both sides of the above inequality,
we get

lim
k→∞,k∈I2

(mk(xl(k)−1) − mk(xl(k))) = 0.

The reminding of the proof follows from Lemma 7 in [1].
(c) By combining item (b) and the definition of η̂k, we get

lim
k→∞,k∈I2

η̂k = lim
k→∞,k∈I2

ηk lim
k→∞,k∈I2

∣∣∣∣fl(k)

fk

∣∣∣∣ = lim
k→∞,k∈I2

ηk = η∗.

This expression, together with item (b), leads to

lim
k→∞,k∈I2

R̂k = η∗ lim
k→∞,k∈I2

fl(k) + (1 − η∗) lim
k→∞,k∈I2

fk

= η∗ lim
k→∞,k∈I2

fk + (1 − η∗) lim
k→∞,k∈I2

fk

= lim
k→∞,k∈I2

fk,

giving the results. □

Lemma 3.5. Suppose that (H0)-(H3) hold and the sequence {xk}k≥0 is gen-
erated by Algorithm 1.
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(a) {R̂k}
k∈I3

is a convergent subsequence of {R̂k}k≥0 and {xk}
k∈I3

⊂
L(x0).

(b) If I3 is not finite, then lim
k→∞,k∈I3

fl(k) = lim
k→∞,k∈I3

fk.

(c) If I3 is not finite, then lim
k→∞,k∈I3

R̂k = lim
k→∞,k∈I3

fk.

Proof. (a) Since xk+1 is accepted by Algorithm 1, we can write

R̂k − fk+1 ≥ µ1(mk(xk) − mk(xk + dk)) > 0,

leading to
fk+1 ≤ R̂k, ∀ k ∈ I3. (3.5)

Since fl(k) < fk+1 for k ∈ I3, the definition of fl(k) implies that fl(k+1) ≤ fk+1,
for k ∈ I3. By combining this expression with (3.5), we get

R̂k+1 ≤ fk+1 ≤ R̂k, (3.6)

which shows that {R̂k}
k∈I3

is decreasing.
We now use the induction to show that xk ∈ L(x0), for all k ∈ I3. If k = 0,

the definition of R̂k indicates that R̂0 = f0. Let us the induction hypothesis is
satisfied, i.e., xk ∈ L(x0), for some k ∈ I3. From (3.6), the definition of R̂k,
and the induction hypothesis, we obtain

fk+1 = R̂k+1 ≤ R̂k ≤ f0.

Thus, xk+1 ∈ L(x0) giving the result.
(H1) and xk ∈ L(x0), for all k ∈ I3, imply that the subsequence {R̂k}

k∈I3

is bounded. Thus, the subsequence {R̂k}
k∈I3

is convergent, too.
(b) From the definition of I3, we obtain

lim
k→∞,k∈I3

fl(k) < lim
k→∞,k∈I3

fk+1 = lim
k→∞,k∈I3

fk. (3.7)

It follows from fk ≤ fl(k) that

lim
k→∞,k∈I3

fk ≤ lim
k→∞,k∈I3

fl(k). (3.8)

From (3.7) and (3.8), we obtain

lim
k→∞,k∈I3

fl(k) = lim
k→∞,k∈I3

fk.

(c) The result is proven in the same way as item (c) of Lemma 3.4. □

The next result is the direct consequence of Lemmas 3.3-3.5.

Corollary 3.6. Suppose that (H0)-(H3) hold and the sequence {xk}k≥0 is
generated by Algorithm 1.

(a) {fl(k)}k∈I1∪I2
is a convergent subsequence of {fk}k≥0 and {xk}

k∈I1∪I2
⊂

L(x0).
(b) {R̂k}

k∈I3
is a convergent subsequence of {Rk}k≥0 and {xk}

k∈I3
⊂

L(x0).
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(c) If Ii is not finite, for i = 1, 2, 3, then lim
k→∞

fl(k) = lim
k→∞

fk.

(d) If Ii is not finite, for i = 1, 2, 3, lim
k→∞

R̂k = lim
k→∞

fk.

The following result is essential for giving the global convergence.

Lemma 3.7. Suppose that (H0)-(H3) hold. If there exists ϵ > 0 such that

∥gk∥ ≥ ϵ, ∀ k, (3.9)

then there exists a constant τ > 0 such that

δk ≥ τ, ∀ k. (3.10)

Proof. It can be shown by induction over k that (3.10) holds with

τ := min
{

δ0,
γ1ϵ

M
,

γ1β(1 − µ1)ϵ
κ

}
.

Indeed, (3.10) is clearly true for k = 0. Assuming that (3.10) is true for iterate
k, we establish the inequality for iterate k + 1. By (H0), (H2) and Lemma 3.1,
we have

1 − rk ≤ κδ2
k

βϵ min
{

δk,
ϵ

M

} .

If
δk ≤ min

{ ϵ

M
,

β(1 − µ2)ϵ
κ

}
, (3.11)

it follows that 1 − rk ≤ 1 − µ2, that is, rk ≥ µ2. As r̂k ≥ rk, we obtain r̂k ≥ µ2.
Thus, the update rule for δk and the induction assumption provide the bound
δk+1 ≥ δk ≥ τ , and so (3.10) holds for k + 1.

Now, suppose that (3.11) is not true. Then, the update rule of δk and the
definition of τ imply that

δk+1 ≥ γ1δk ≥ min
{γ1ϵ

M
,

γ1β(1 − µ2)ϵ
κ

}
≥ τ.

This shows that (3.10) holds for k + 1 and completes the induction argument.
□

Theorem 3.8. Suppose that (H0)-(H3) hold. Then

lim
k→∞

inf ∥gk∥ = 0.

Proof. Suppose by contradiction that there exists ϵ > 0 such that ∥gk∥ ≥ ϵ for
all k. In this case, Lemma 3.7 provides the bound

δk ≥ τ, ∀ k, (3.12)

where τ is defined in (3.10). Let us consider the set K := {k ∈ N | r̂k ≥ µ1}.
For k ∈ K, (H0) and (3.12) imply that

R̂k − fk+1 ≥ µ1βϵ min
{ ϵ

M
, τ

}
. (3.13)
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On the other hand, as k → ∞, by the definition of Ii’s, there exists at least i ∈
{1, 2, 3} so that Ii is not finite. Then, by Lemma 3.3-3.5, we get R̂k −fk+1 → 0
as k → ∞ and k ∈ K ⊆ Ii. Thus, from (3.13) we see that K is finite. Therefore,
r̂k < µ1 for all k sufficiently large. Consequently, by the rule of updating δk,
we get δk → 0, which contradicts (3.12). □

Theorem 3.9. Suppose that (H0)-(H3) hold. Then

lim
k→∞

∥gk∥ = 0.

Proof. Thanks to Theorem 3.8 and to Corollary 3.6, it follows as in the proof
of Theorem 11 in [1]. □

In the sequel, we will show the local superlinear and quadratic convergence
rates of Algorithm 1 under some classical assumptions that have been widely
used in the nonlinear optimization literatures.

Theorem 3.10. Suppose that (H0)-(H3) hold, the sequence {xk}k≥0 is gener-
ated by Algorithm 1 converging to x∗, the matrix G(x) := ∇2f(x) is continuous
in a neighborhood N(x∗, ϵ) of x∗, and Bk satisfies

lim
k→∞

∥[Bk − G(x∗)]dk∥
∥dk∥

= 0.

If x0 is close enough to x∗, then, the sequence {xk}k≥0 converges to x∗ su-
perlinearly. Moreover, if Bk := G(xk) and G(x) is Lipschitz continuous in a
neighborhood N(x∗, ϵ), then the sequence {xk}k≥0 converges to x∗ quadratically.

Proof. The proof is similar to the proof of Theorems 4.1 and 4.2 in [2] and
therefore the details are omitted. □

4. Preliminary numerical experiments

We now firstly report the results obtained by running Algorithm 1 (NMTRN)
in comparison with the nonmonotone trust-region algorithm of Ahookhosh et
al. in [1] (NMTRA) and the nonmonotone trust-region algorithm from Zhang
et al. in [35] (NMTRZ) on 219 standard unconstrained test problems; see
Appendix A. All tests were written in double precision format in MATLAB
2011a on a laptop Asus with a 1.7 GHz Intel Core i3-4010U CPU and 4 GB of
memory under ubuntu 10.04 Linux.

For all of these codes, the trust-region subproblems are solved by Steihaug
& Toint procedure, see [10, 30]. Such an algorithm ends up at xk + d if

∥∇m(xk + d)∥ ≤ min

0.01, ∥∇mk(xk)∥
1
2

 ∥∇mk(xk)∥ or ∥d∥ = δk,

holds. In our numerical experiments, the algorithms are stopped whenever

∥gk∥ ≤ 10−6√
n,



26 M. Kimiaei, H. Esmaeili, F. Rahpeymaii

or the total number of iterates exceeds 20000. During our implementation, we
verified whether the different codes converge to the same point. Therefore, we
only provided data for problems in which all algorithms converged to the same
point. In all algorithms, the matrix Bk is updated by the compact limited
memory BFGS formula

Bk := B
(0)
k −

[
Yk B

(0)
k Sk

] [
−Dk LT

k

Lk ST
k B

(0)
k Sk

]−1 [
Y T

k

ST
k B

(0)
k

]
,

where the basic matrix B
(0)
k is defined as B

(0)
k := λI, for some positive scalar

λ. Sk, Yk, Dk and Lk are defined as follows:

Sk := [sk−m, . . . , sk−1], Yk = [yk−m, . . . , yk−1],

Dk := diag
[
sT

k−myk−m, . . . , sT
k−1yk−1

]
,

(Lk)i,j :=
{

sT
k−m+i−1yk−m+j−1, if i > j,

0, otherwise,

where
sk := xk+1 − xk, yk := gk+1 − gk,

and m := min{k, m1} in where m1 = 5. In our implementation, we use

λ := ∥ykm∥2

ykm
T skm

,

suggested by Shanno & Plau in [32]. However, we do not update Bk whenever
the curvature condition, i.e., sT

ki
yki

> 0 for i = 1, . . . , m, does not hold, cf. [9].
The code of the compact limited memory BFGS updating formula is rewritten
based on ASTRAL code in [34]. For all algorithms, the trust-region radius is
updated by (2.4) and we set µ1 = 10−5, µ2 = 0.2, µ3 = 0.8, γ1 = 0.25, γ2 = 0.5,
γ3 = 2, δ0 = 10 and N = 10, see [34]. Furthermore, for all algorithms, the
parameter ηk is updated by

ηk :=


2
3

ηk−1 + 0.01 if ∥gk∥ ≤ ξ,

max{0.99ηk−1, 0.5} otherwise,

where η0 = 0.2 and ξ = 10−2, see [4].
Tables 1-3 indicate the names and dimensions of the test problems consid-

ered. To demonstrate the overall behavior of the presented algorithms and get
more insight about the performance of the considered codes, the performance of
all codes, based on Ni and Nf , has been assessed by applying the performance
profile proposed from Dolan & Moré by [12]. In this procedure, the profile of
each code is measured based on the ratio of its computational outcome versus
the best numerical outcome of all codes. This profile offers a tool for comparing
the performance of iterative processes in statistical structure. In the figures,
P designates the percentage of problems, which are solved within a factor τ
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Figure 1. A comparison among NMTRA, NMTRZ and
NMTRN by performance profiles using the measures Ni and
Nf : (a) displays the number of iterations (left); (b) shows the
number of function evaluations (right), respectively
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of the best solver. The results are illustrated in Figures 1 with respect to the
total number of iterates and the total number of function evaluations.

Subfigure (a) of Figure 1 shows that NMTRN outperforms NMTRA and
NMTRZ regarding the total number of iterates. In particular, NMTRN has
most wins in nearly 68% score of the tests with the greatest efficiency. Mean-
while, in the sense of the ability of completing a run successfully, it is the best
among considered algorithms because it grows up faster than others and reaches
1 more rapidly. As illustrated in Subfigure (b) of Figure 1, NMTRN imple-
ments remarkably better than others where it has most wins in approximately
74% score of performed tests concerning the total number of function evalua-
tions. Furthermore, Figure 1 shows similar patterns in the sense of the ability
of completing a run successfully. As a result, this fact directly implies that the
total number of solving the trust-region subproblems is notably decreased for
NMTRN.

5. Concluding Remarks

This paper is concerned with introducing and analyzing a trust-region-
based algorithm for unconstrained optimization using a new effective nonmono-
tone strategy. To overcome some disadvantages of the nonmonotone strategy
(1.6), our new nonmonotone strategy has been constructed based on a com-
bination of the current function value with the maximum function values in
some prior successful iterate. We showed that a suitable adaptive process can
increase effectiveness of the new nonmonotone strategy compared with some
stat-of-the-art nonmonotone strategies [1, 35]. The global convergence and lo-
cal convergence rates of the proposed algorithm are established. Preliminary
numerical results on a large set of unconstrained optimization problems indi-
cate the promising behavior of the proposed method.
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Appendix A. Appendix: The list of test problems

In Table 1, the problems are discussed from the CUTEst unconstrained test
problems proposed by Gould et al. in [16] while the test problems of Table 2
are taken from Lukšan & Vlček in [25]. In addition, the problems of Table
3 are selected from Andrei in [8].

Table 1. List of CUTEst test problems

Problem name Dim Problem name Dim Problem name Dim

AIRCRFTB 8 DIXMAANL 9000 MEXHAT 2

ALLINITU 4 DIXMAANM 9000 MINSURF 64

ARGLINA 200 DIXMAANN 9000 MOREBV 5000

ARWHEAD 5000 DIXMAANO 9000 MSQRTALS 1024

BARD 3 DIXMAANP 9000 MSQRTBLS 1024

BDQRTIC 100 DJTL 2 NLMSURF 5625

BEALE 2 DQDRTIC 5000 NCB20 5010

BIGGS3 6 DQRTIC 1000 NCB20B 5000

BIGGS5 6 EDENSCH 2000 NONCVXU2 1000

BIGGS6 6 EG2 1000 NONDIA 5000
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Table 1. List of CUTEst test problems (continued)

BOX2 3 EIGENALS 110 NONDQUAR 5000

BOX3 3 EIGENBLS 110 OSBORNEA 5

BROWNAL 200 EIGENCLS 110 OSBORNEB 11

BRKMCC 2 ENGVAL1 5000 PENALTY1 1000

BRYBND 5000 ENGVAL2 3 PENALTY2 10

CHAINWOO 1000 ERRINROS 50 PENALTY3 50

CHNROSNB 50 EXPFIT 2 POWELLSG 500

CLIFF 2 FMINSRF2 5625 POWER 10000

COSINE 10000 FMINSURF 5625 RAYBENDL 40

CRAGGLVY 5000 FREUROTH 5000 ROSENBR 2

CUBE 2 GENROSE 500 S308 2

CURLY10 10 GROWTHLS 3 SCHMVETT 5000

DECONVU 63 GULF 3 SENSORS 100

DENSCHNA 2 HAIRY 2 SINEVAL 2

DENSCHNB 2 HATFLDD 3 SINQUAD 1000

DENSCHNC 2 HATFLDE 3 SISSER 2

DENSCHND 3 HEART6LS 6 SNAIL 2

DENSCHNE 3 HEART8LS 8 SPARSQUR 10000

DENSCHNF 2 HELIX 3 SPMSRTLS 4900

DIXMAANA 9000 HILBERTA 2 SROSENBR 5000

DIXMAANB 9000 HILBERTB 10 TESTQUAD 5000

DIXMAANC 9000 HIMMELBB 2 TOINTGOR 50

DIXMAAND 9000 HIMMELBF 4 TOINTGSS 5000

DIXMAANE 9000 HIMMELBG 2 TRIDIA 5000

DIXMAANF 9000 HIMMELBH 2 VARDIM 200

DIXMAANG 9000 KOWOSB 4 VAREIGVL 50

DIXMAANH 9000 LIARWHD 5000 WATSON 12

DIXMAANI 9000 LMINSURF 5625 WOODS 4000

DIXMAANJ 9000 MANCINO 100 YFITU 3

DIXMAANK 9000 MARATOSB 2 ZANGWIL2 2
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Table 2. List of Lukšan and Vlček’s test problems

Problem name Dim Problem name Dim

Allgower and Georg b.v 15 Generalization of the Brown 2 10000

Another trigonometric 5000 Modified discrete b.v 100

Ascher and Russel b.v 30 Potra and Rheinboldt b.v 20

Attracting-Repelling 400 Problem 201 200

Banded trigonometric 3000 Problem 202 20000

Brent 9 Problem 206 500

Broyden tridiagonal (problem 36) 40000 Problem 207 20000

Broyden tridiagonal (problem 62) 1000 Problem 208 25000

Chained and modified prolem HS47 8 Problem 212 30000

Chained and modified prolem HS48 8 Problem 213 5000

Chained cragg and levy 10000 Problem 214 30000

Chained exponential 1000 Seven-diagonal system 2000

Chained Freudenstein and Roth 10000 Seven-diag. gen. of the broyden trid. 5000

Chained powell singular 12000 Singular Broyden 5000

Chained Rosenbrock 1000 Sparse modifi. of the Nazareth trig. 8

Chained serpentine 1000 Sparse signomial 1200

Chained wood 1000 Sparse trigonometric 4

Countercurrent reactors 1 8 Structured Jacobian 2000

Countercurrent reactors 2 800 Toint quadratic merging 10000

Discrete boundary value 5000 Toint trigonometric 100

Extended Freudenstein and Roth 5000 Tridiagonal exponential 15

Extended Gragg and Levy 30000 Tridiagonal system 1000

Extended Powell badly scaled 4 Trigexp 1 25000

Extended Powell Singular 28000 Trigexp 2 100

Extended Rosenbrock 40000 Troesch 50

Extended Wood 30000 Variational 1 1000

Five-diagonal system 2000 Variational 2 1000

Flow in a channel 20 Variational 3 1000

Generalized Broyden Banded 30000 Variational 4 1000

Generalized Broyden tridiagonal 30000 Variational Calvar 2 500

Generalization of the Brown 1 1000 Wrigth and Holst zero residual 200



A nonmonotone trust-region algorithm 33

Table 3. List of Andrei’s test problems

Problem name Dim Problem name Dim

Almost Perturbed Quadratic 10000 Extended Tridiagonal 2 20000

Diagonal 1 10 Extended White and Holst 20000

Diagonal 2 10000 Fletcher 500

Diagonal 3 100 Generalized PSC1 30000

Diagonal 4 30000 Genaralized Tridiagonal 1 30000

Diagonal 5 30000 Generalized Tridiagonal 2 200

Extended Beale 30000 Generalized Rosenbrock 1000

Extended BD1 30000 Generalized White and Holst 500

Extended Cliff 30000 Hager 2000

Extended Himmelblau 30000 Perturbed Quadratic 3000

Extended Maratos 30000 Perturbed Quadratic diagonal 5000

Extended Penalty 1000 Purterbed Tridiagonal quadratic 5000

Extended Powell 20000 Quadratic QF1 10000

Extended PSC1 30000 Quadratic QF2 10000

Extended quadratic exponential EP1 10000 Raydan 1 1000

Extended quadratic penalty QP1 10000 Raydan 2 1000

Extended quadratic penalty QP2 10000 Staircase 1 4

Extended TET 30000 Staircase 1 3

Extended Tridiagonal 1 30000


