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Abstract. Let G = (V (G), E(G)) be a simple, finite and undirected
graph of order n. A k-vertex weighting of a graph G is a mapping
w : V (G) → {1, . . . , k}. A k-vertex weighting induces an edge label-
ing fw : E(G) → N such that fw(uv) = w(u) + w(v). Such a labeling is
called an edge-coloring k-vertex weighting if fw(e) ̸= fw(e′) for any two
adjacent edges e and e′. Denote by µ′(G) the minimum k for G to admit
an edge-coloring k-vertex weighting. In this paper, we determine µ′(G)

for some classes of graphs.
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1. Introduction

Let G = (V (G), E(G)) (or simply G = (V,E) for short, if there is no am-
biguity) be a simple, finite and undirected graph of order |V | = v and size
|E| = e. All notation not defined in this paper can be found in [1].

The first paper on graph labeling was introduced by Rosa in 1967. Since
then, there have been more than 1500 research papers on graph labelings being
published (see the dynamic survey by Gallian [4]).

In [7], the concept of vertex-coloring k-edge weighting was introduced.

Definition 1.1. A mapping w : E(G) → {1, . . . , k} induces a vertex labeling
fw : V (G) → N such that fw(v) is the sum of the weighting of the edges
incident to v. Such a labeling is called a vertex-coloring k-edge weighting if
fw(u) ̸= fw(v) for any edge uv.

Denote by µ(G) the minimum k such that G has a vertex-coloring k-edge
weighting. Clearly, such a graph G does not have a K2 as a component. We
say a graph is non-trivial if it does not contain a K2 as a component. It is
conjectured in [7] that µ(G) ≤ 3 for all non-trivial graph G.

Several results on vertex-coloring k-edge weighting graphs can be found in [2,
3, 5, 6, 9]. In this paper, we introduce a dual version of vertex-coloring k-edge
weighting which is defined as follow.

Definition 1.2. A mapping w : V (G) → {1, . . . , k} induces an edge labeling
fw : E(G) → N such that fw(uv) = w(u) + w(v). Such a labeling is called an
edge-coloring k-vertex weighting if fw(e) ̸= fw(e

′) for any two adjacent edges e

and e′.

Denote by µ′(G) the minimum k for G to admit an edge-coloring k-vertex
weighting.

The following facts follow directly from the definition.
Fact 1. µ′(G) = 1 if and only if every component of G is a K2.
Fact 2. Suppose w is an edge-coloring k-vertex weighting of G. If u and

v have a common neighbor in G, then w(u) ̸= w(v). This is also a sufficient
condition for an edge-coloring vertex weighting.

By the definition of edge-coloring k-vertex weighting, it induces an edge-
coloring for the concerning graph. Precisely, it induces a k-edge-coloring. Fol-
lowing is the detail.

Fact 3. Let χ′(G) be the chromatic index of G. Then µ′(G) ≥ χ′(G). Hence
µ′(G) ≥ ∆(G), where ∆(G) is the maximum degree of G.

Proof. Suppose w is an edge-coloring k-vertex weighting of G. Let A be the
multiplication table of Zk. One may choose any symmetric Latin square of order
k. Define f : E(G) → Zk by f(uv) = (A)w(u),w(v), that is the (w(u), w(v))-
entry of A. Clearly, f is a proper k-edge-coloring. □
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2. µ′(G) for Some Classes of Graphs

Proposition 2.1. For n ≥ 2, µ′(Pn) = ∆(Pn).

Proof. Let Pn = v1v2 · · · vn. For n = 2, it follows from Fact 1. For n ≥ 3,
∆(Pn) = 2. It follows from the fact that the following mapping w is an edge-
coloring 2-vertex weighting for n ≥ 3: w(vi) = 1 for i ≡ 1, 2 (mod 4), and
w(vi) = 2 for i ≡ 0, 3 (mod 4). □

Proposition 2.2. For n ≥ 3, µ′(Cn) = 2 if n ≡ 0 (mod 4) and µ′(Cn) = 3

otherwise.

Proof. Let Cn = u1u2 · · ·unu1. It follows from Fact 3 that µ′(Cn) ≥ 2. From
Fact 2, it is clear that µ′(C3) = 3. We now assume n ≥ 4.
Case 1. n ≡ 0 (mod 4). Define w(ui) = 1 for i ≡ 1, 2 (mod 4), and w(ui) = 2

for i ≡ 0, 3 (mod 4). Clearly, w is an edge-coloring 2-vertex weighting.
Case 2. n = 4k + r, 1 ≤ r ≤ 3. Assign ui as in Case 1 for i ≤ 4k. If r = 1, 2,

then assign the remaining vertices by 3. If r = 3, then assign un−2

and un−1 by 3 and un by 2. Clearly, the mapping is an edge-coloring
3-vertex weighting.

Suppose µ′(Cn) = 2. Without loss of generality, we assume w(u1) =

1. By Fact 2, we must have w(u3) = 2. Hence, w(u2) = 1 or w(u2) = 2.
If the former holds, then we must assign ui as in Case 1 for i ≤ 4k.
Now, the remaining vertices must be assigned with 1 or 2, contradicting
Fact 2. If the later holds, then we must assign ui by 1 for i ≡ 0, 1

(mod 4), and by 2 for i ≡ 2, 3 (mod 4). Again, assigning the remaining
vertices by 1 or 2 contradicts Fact 2.

□

Proposition 2.3. For n ≥ 3, µ′(Kn) = n.

Proof. Let V (Kn) = {v1, v2, . . . , vn}. By Fact 3, µ′(Kn) ≥ n − 1. If the
equality holds, then at least two vertices will be assigned the same integer in
{1, 2, . . . , n − 1}. This contradicts Fact 2 since every two vertices of Kn have
n− 2 common neighbors. Hence, µ′(Kn) ≥ n. The following mapping w show
that the equality holds: w(vi) = i for 1 ≤ i ≤ n. □

Proposition 2.4. For 1 ≤ m ≤ n, µ′(Km,n) = ∆(Km,n) = n.

Proof. Let the vertices in the two partite sets be ui, 1 ≤ i ≤ m and vi, 1 ≤ i ≤ n.
By Fact 3, µ′(Km,n) ≥ n. The following mapping w shows that the equality
holds: w(ui) = w(vi) = i. □

Let Wn be the wheel graph of order n+ 1 with a central vertex u of degree
n.

Theorem 2.5. For n ≥ 4, µ′(Wn) = n. Moreover, µ′(W3) = 4.
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Proof. Note that W3
∼= K4. By Proposition 2.3, µ′(W3) = 4. Suppose n ≥ 4.

By Fact 3, µ′(Wn) ≥ n. The following mapping w shows that the equality
holds: w(u) = 1, assign the remaining vertices by 1 to n consecutively. □
Definition 2.6. Let Gn, n ≥ 2, denote the gear graph obtained from a wheel
graph of order 2n + 1 by deleting n spokes where no two of the spokes are
consecutive.

Theorem 2.7. For n ≥ 4, µ′(Gn) = n. Moreover, µ′(G2) = 3 and µ′(G3) = 4.

Proof. Let u be the central vertex of degree n and the induced cycle C2n be
v1v2 · · · v2n such that vi is of degree 3 for odd i. Suppose n = 2. By Fact 3,
µ′(G2) ≥ 3. Assign u by 3 and v1 to v4 by 1,1,2,2. We have µ′(G2) = 3. Note
that ∆(G2) = µ′(G2).

Suppose n = 3. By Fact 3, µ′(G3) ≥ 3. Suppose the equality holds. Since u

is adjacent to vertices v2i−1, we assign v2i−1 by i for 1 ≤ i ≤ 3. Without loss of
generality, assume u is assigned 1. By Fact 2, none of v2i, i = 1, 2, 3, is assigned
by 1. Hence, at least two of them must get the same label. This contradicts
Fact 2. Hence, µ′(G3) ≥ 4. Now, assign v1 to v6 by 2, 2, 3, 3, 4, 4 consecutively.
We have µ′(G3) = 4.

Now assume n ≥ 4 so that ∆(Gn) = n. By Fact 3, µ′(Gn) ≥ n. The
following mapping w shows that equality holds: w(u) = 1, w(v2i−1) = i for
1 ≤ i ≤ n, w(v2i) = i+ 1 for 1 ≤ i ≤ n− 1, and w(v2n) = n− 1. □

Note that µ′(G3) = ∆(G3) + 1. This shows that not all bipartite graphs G

have µ′(G) = ∆(G).

Problem 2.1. Find necessary and/or sufficient condition for a bipartite graph
G to have µ′(G) = ∆(G).

Remark 2.8. It would be more natural to ask first whether the exact 2-distance
chromatic number of bipartite graphs is computable in polynomial time. The
following argument shows that the problem is NP-complete, which means that
”algorithmically simple” conditions that are both necessary and sufficient very
likely do not exist.

Let H be a 3-regular graph and let G be the graph obtained from H by
replacing every edge of G by a path of length 2 (that is, G is the 1-subdivision
of H). Clearly, G is a bipartite graph, with one part, A, formed by the vertices
of G and the other part, B, formed by the new degree-2 vertices. The exact
2-distance chromatic number of G is now equal to the maximum of χ(H) and
χ′(H) (the chromatic number and the chromatic index of H). Indeed, the
maximum number of colors needed to color the vertices in A is equal to χ(H),
and the maximum number of colors needed to color the vertices in B is equal
to χ′(H).

By Brooks theorem, χ(H) = 3 whenever H is not isomorphic to K4. By
Vizing’s theorem, χ′(H) is equal to 3 or 4, so whenever H is not isomorphic
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to K4, then the exact 2-distance chromatic number of G is equal to χ′(H).
Finally, computing the chromatic index of a 3-regular graph is an NP-complete
problem [8].

Theorem 2.9. For a grid Pm × Pn,m, n ≥ 3, we have µ′(Pm × Pn) = 4.

Proof. By Fact 3, we have µ′(Pm×Pn) ≥ 4. We now show that equality holds.
View the grid as a collection of horizontal paths, with the paths stacked one

above another. Label the vertices as follows, path by path, from top to bottom.
1 2 2 1 1 2 2 1 …
3 4 4 3 3 4 4 3 …
2 1 1 2 2 1 1 2 …
4 3 3 4 4 3 3 4 …
Continue with the same pattern. It can be verified that all adjacent edges

will get distinct weights. □

From Fact 1, we know all 1-regular graphs G have µ′(G) = 1. From Propo-
sition 2.2, we know that all 2-regular graphs G have µ′(G) = 2 if and only if
each component of G is an n-cycle with n ≡ 0 (mod 4). From Proposition 2.3,
we know that for each r ≥ 2, there exists an r-regular graph G such that
µ′(G) = r + 1. In next theorem, we show that there are also 3-regular graphs
G with µ′(G) = 3 or 4.

Theorem 2.10. For n ≥ 3, we have

µ′(P2 × Cn) =

{
3 if n ≡ 0 (mod 3);

4 if n ̸≡ 0 (mod 3).

Proof. Let G = P2 × Cn with the 2 induced Cn given by C1 = u1u2 · · ·unu1

and C2 = v1v2 · · · vnv1, where uivi are edges, 1 ≤ i ≤ n. By Fact 3, µ′(G) ≥ 3.
(1) n ≡ 0 (mod 3). Assign the vertices ui and vi by 1,2,3 periodically for 1 ≤

i ≤ n. It is clear that the labeling is an edge-coloring 3-vertex weighting.
(2) Suppose n ≡ 1 (mod 6). Assume n = 7. Suppose µ′(P2 × C7) = 3. By

Fact 2, and without loss of generality, assume that u2, u7, v1 are assigned
by 1, 2, 3 respectively. It follows that we must assign v3, u4, v5, u6, v7 by
2, 3, 1, 2, 3 respectively. This implies that v6, u5, v4, u3, v2 must be assigned
by 1, 3, 2, 1, 3 respectively. We get a contradiction since v2 and v7 are
assigned by 3. Hence, µ′(P2 × C7) ≥ 4. For n ≥ 13, we can show similarly
that µ′(G) ≥ 4.

Suppose n ≡ 4 (mod 6). Assume n = 4. Suppose µ′(P2 × C4) = 3. By
Fact 2, and without loss of generality, assume that u2, u4, v1 are assigned
1, 2, 3 respectively. It follows that v3 cannot be assigned since it has a
common neighbor with u2, u4, v1, respectively. Hence, µ′(P2 × C4) ≥ 4.
For n ≥ 10, we can show similarly that µ′(G) ≥ 4.
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To show that equality holds for n ≡ 1 (mod 3), we assign ui and vi by
1, 2, 3 periodically for 1 ≤ i ≤ n− 1, and assign un, vn by 4.

(3) Suppose n ≡ 5 (mod 6). Assume n = 5. Suppose µ′(P2 × C5) = 3. By
Fact 2, and without loss of generality, assume that u2, u5, v1 are assigned
by 1, 2, 3 respectively. It follows that we must assign v3, u4, v5 by 2, 3, 1

respectively. This implies that v4, u3, v2 must be assigned by 1, 3, 2 re-
spectively. Now u1 cannot be assigned. Hence, µ′(P2 × C5) ≥ 4. Clearly
µ′(P2 ×C5) = 4 by the same assignment as above and assign u1 by 4. For
n ≥ 11, we can show similarly that µ′(G) ≥ 4. To show that equality holds,
we can assign u1 by 4 and u2 to un by 1, 3, 3, 2, 2, 1 periodically. We then
assign v1 to vn by 3, 2, 2, 1, 1, 3 periodically.

Suppose n ≡ 2 (mod 6). Assume n = 8. Suppose µ′(P2 × C8) = 3. By
Fact 2, and without loss of generality, assume that u2, u8, v1 are assigned
by 1, 2, 3 respectively. It follows that we must assign v3, u4, v5 by 2, 3, 1

respectively. Then u6 cannot be assigned. Hence, µ′(P2 × C8) ≥ 4. For
n ≥ 14, we can show similarly that µ′(G) ≥ 4. Now we suppose to give a
vertex-coloring 4-edge weighting for this case. n ≡ 0 (mod 4). Assign u1

to un by 1, 2, 3, 4 periodically. Then assign the label to vi by the same label
of ui. Suppose n ≡ 2 (mod 4). Assign u1 to un−2 by 1, 2, 3, 4 periodically.
Then assign v1 to vn−1 by 3, 4, 1, 2 periodically. Finally, assign un−1, un,
vn−1 and vn by 4, 1, 2, and 3, respectively.

□

Definition 2.11. Let DS(m,n) denote the double star graph obtained from
K1,m and K1,n by adding an edge joining the two vertices of the two bipartite
graphs with maximum degree.

Theorem 2.12. For 1 ≤ m ≤ n, µ′(DS(m,n)) = n+ 1.

Proof. Let the vertex sets of K1,m and K1,n be {u} ∪ {ui | 1 ≤ i ≤ m} and
{v} ∪ {vi | 1 ≤ i ≤ n}, where u and v are the central vertices, respectively.

By Fact 3, we have µ′(DS(m,n)) ≥ n+ 1. The following mapping w shows
that the equality holds: w(u) = n+ 1, w(ui) = i+ 1, w(v) = 1, w(vi) = i. □

Theorem 2.13. All trees T have µ′(T ) = ∆(T ).

Proof. By Fact 3, µ′(T ) ≥ ∆(T ). It suffices to show that the equality holds.
Let u be a vertex of T and call it the root. Label u with 1. Now u has d ≤
∆(T ) children, say u1, u2, . . . , ud. Label these children using distinct integers
in {1, 2, . . . , d}. Suppose deg(ui) = di ≥ 2. Observe that each of ui (1 ≤ i ≤ d)

has its parent u and at most di−1 children as adjacent vertices. Since ui already
has a label, we label the children of ui using distinct integers in {1, 2, . . . , di}
that are not labels of the parent of ui. This process can be repeated until all
the vertices with a common neighbor are labeled with distinct integers. Since
T is a tree, we cannot go back to a previously labeled vertices. This guarantees
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that all integers in {1, 2, . . . ,∆(T )} are being used and that all adjacent edges
have distinct labels. □

Definition 2.14. A tadpole graph Tn,l is a simple graph obtained from an
n-cycle by attaching a path of length l, where n ≥ 3 and l ≥ 1. Let the n-cycle
be u1u2 · · ·un−1un and the attached path be unv1 · · · vl.

Theorem 2.15. For n ≥ 3 and l ≥ 1, µ′(Tn,l) = 3.

Proof. By Fact 3, we know µ′(Tn,l) ≥ 3. We now show that equality holds. The
weights of the vertices belong to the n-cycle are assigned as in Proposition 2.2
such that

(i) for n ≡ 0 (mod 4), w(un−1) = w(un) = 2. Assign v1 by 3 and the
remaining vertices by 1,1,2,2 periodically;

(ii) for n ≡ 1 (mod 4), w(un) = 3. Assign v1 by 3 and the remaining vertices
by 1,1,2,2 periodically;

(iii) for n ≡ 2 (mod 4), w(un−1) = w(un) = 3. Assign the vertices v1 to vl by
2,2,1,1 periodically;

(iv) for n ≡ 3 (mod 4), w(un−2) = w(un−1) = 3, w(un) = 2. Assign the
vertices v1 to vl by 1,1,2,2 periodically.

□

Definition 2.16. A lollipop graph Ln,l is a simple graph obtained from a
complete graph Kn attaching a path of length l, where n ≥ 3 and l ≥ 1. Let
vertices of Kn-cycle be u1, . . . , un and the attached path be u1v1 · · · vl.

Theorem 2.17. For n ≥ 3 and l ≥ 1, µ′(Ln,l) = n.

Proof. By Fact 3, we know µ′(Ln,l) ≥ n. The following mapping w shows that
the equality holds: w(ui) = i, 1 ≤ i ≤ n, which is same as in Proposition 2.3.
Assign the vertices v1 to vl by 1,2,2,1 periodically. □

Definition 2.18. Given t ≥ 2 paths, Pnj
= vj,1 · · · vj,nj

, of order nj ≥ 2,
(1 ≤ j ≤ t). A spider graph SP (n1, . . . , nt) is the one-point union of the t

paths at vertex vj,1.

Theorem 2.19. For t ≥ 2, µ′(SP (n1, . . . , nt)) = t.

Proof. Let the merged vertex be denoted by v1,1. Assign vj,2 to vj,nj
by

j, j, 1, 1 periodically if 2 ≤ j ≤ t. Assign v1,1 to v1,n1
by 1, 1, 2, 2 periodi-

cally. Then we have an edge-coloring t-vertex weighting. Hence by Fact 3, we
know µ′(SP (n1, . . . , nt)) = t. □

Definition 2.20. For t ≥ 2, a one point union of t cycles is a graph obtained
from t cycles, say Cni

for ni ≥ 3, 1 ≤ i ≤ t, by identifying one vertex from each
cycle. We denote such a graph by U(n1, . . . , nt). Without loss of generality,
we always assume that 3 ≤ n1 ≤ · · · ≤ nt.
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Theorem 2.21. For t ≥ 2, µ′(U(n1, . . . , nt)) = 2t+ 1 if nj = 3 for 1 ≤ j ≤ t

and µ′(U(n1, . . . , nt)) = 2t otherwise.

Proof. Let the t cycles be Cnj = vj,1 · · · vj,njvj,1. We merge v1,1, v2,1, v3,1, …,
vt,1 into one vertex, say v1,1 again.

Suppose nt = 3. By Fact 2, all the vertices must get different labels. Hence,
µ′(U(n1, . . . , nt)) = 2t + 1. This can be attained by defining w(v1,1) = 1,
w(vj,2) = 2j and w(vj,3) = 2j + 1 for 1 ≤ j ≤ t.

Suppose nt ≥ 4. Consider the star induced by the set X = {v1,1} ∪
{vj,2, vj,nj

| 1 ≤ j ≤ t}. Assign v1,1 and vt,2 by 1, vt,nt
by 2t, vj,2 by

2j for 1 ≤ j ≤ t − 1 and vj,nj
by 2j + 1 for 1 ≤ j ≤ t − 1. The sub-

graph U(n1, . . . , nt) − X is a disjoint union of some paths. Assign the path
v1,3v1,4 · · · v1,n1−1 by 4,4,2,2 periodically and each of other path by 2,2,3,3 pe-
riodically. □

Definition 2.22. A cycle with a long chord (or theta graph) is a graph obtained
from a cycle Cm, m ≥ 4, by adding a chord of length l where l ≥ 1. Namely,
let Cm = u0u1 · · ·um−1u0. Without loss of generality, we may assume the long
chord joins u0 with ua, where 2 ≤ a ≤ m−2. That is, u0umum+1 · · ·um+l−2ua

is the chord. We denote this graph by Cm(a; l). Note that, by symmetry we
may assume that 2 ≤ a ≤ ⌊m/2⌋; when l = 1, the chord is u0ua.

Theorem 2.23. For a ≥ 2, l ≥ 1, µ′(Cm(a; l)) = 3 except a graph isomor-
phic to C6(2; 2), C6(3; 2) or C6(3; 3). Moreover µ′(C6(2; 2) = µ′(C6(3; 2)) =

µ′(C6(3; 3)) = 4.

Proof. The theta graph contains three cycles which are isomorphic to Cm, Ca+l

and Cm−a+l. Hence at least one cycle is even. By Fact 3, µ′(Cm(a, l)) ≥ 3.

(1) Suppose there is a 4k-cycle. Then the graph is isomorphic to C4k(a; l) for
some l ≥ 1 and 2 ≤ a ≤ 2k. The weights of the vertices belong to the
4k-cycle is assigned as in Proposition 2.2 starting at u0. Let such labeling
be w. Hence w(u0) = 1 and w(ua) = 1 or 2.
(a) l ≡ 0 (mod 4). Reassign u1 by 3 and assign or reassign the path

u0u4k · · ·u4k+l−2 by 1,1,3,3 periodically.
(b) l ≡ 1 (mod 4). If l = 1, then reassign ua by 3. If l ≥ 5, then assign or

reassign the path u1u0u4k · · ·u4k+l−2 by 3,3,1,1 periodically
(c) l ≡ 2 (mod 4). Assign or reassign the path u0u4k · · ·u4k+l−2 by 3,3,1,1

periodically.
(d) l ≡ 3 (mod 4). Assign the path u4k · · ·u4k+l−2 by 3,3,1,1 periodically.

Hence, µ′(C4k(a; l)) = 3.
(2) Suppose there is a 2k-cycle for some odd k ≥ 3. Then the graph is iso-

morphic to C2k(a; l) for some l ≥ 1 and 2 ≤ a ≤ k. The weights of the
vertices belong to the 2k-cycle is assigned as in Proposition 2.2 starting at
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u1. Let such labeling be w. Hence w(u0) = 3 = w(u2k−1), w(u2k−2) = 2

and w(ua) = 1 or 2.
(a) l ≡ 0 (mod 4). Suppose w(ua) = 2. Let w(u2k) = 2 and assign the

path u2k+1 · · ·u2k+l−2 by 1,3,3,1 periodically. Suppose w(ua) = 1.
Assign the path u2k · · ·u2k+l−2 by 2,2,3,3 periodically.

(b) l ≡ 1 (mod 4). Suppose l ≥ 5. Then assign the path u2k · · ·u2k+l−2

by 2,2,3,3 periodically.
Suppose l = 1. If w(ua) = 2, then nothing needs to do. Suppose
w(ua) = 1. If a ≡ 2 (mod 4), then w(ua−1) = 1. For k = 3, reassign
the vertices u0 to u5 by 1,2,3,3,2,1 respectively. For k ≥ 5, remove
the chord u0ua and add the chord u2k−1ua−1. The resulting graph is
isomorphic to the original and the weights assignment is proper. If
a ≡ 1 (mod 4), then w(ua−1) = 2. Reassign the vertices u2k−3, u2k−2,
u2k−1, u0, u1 by 3,2,2,3,3, respectively.

(c) l ≡ 2 (mod 4). Suppose l ≥ 6. Let w(u2k) = 2 and assign the path
u2k+1 · · ·u2k+l−2 by 1,1,3,3 periodically.
Suppose l = 2. Assume k ≥ 5. If w(ua) = 1, then reassign or assign
the vertices u2k−3, u2k−2, u2k−1, u0, u2k by 3,3,2,2,3, respectively. If
w(ua) = 2, then a ≡ 3, 0 (mod 4). Since k ≥ 5 and a ̸= 5, a < 2k − 5.
Reassign or assign the vertices u2k−3, u2k−2, u2k−1, u0, u2k, ua by
3,3,2,2,3,3, respectively. For k = 3, we will deal with C6(2; 2) and
C6(3; 2) later.

(d) l ≡ 3 (mod 4). Suppose l ≥ 7. Let w(u2k) = w(u2k+1) = 2 and assign
the path u2k+2 · · ·u2k+l−2 by 1,1,3,3 periodically.
Suppose l = 3. When k ≥ 5, a < 2k−4. Reassign or assign the vertices
u2k−3, u2k−2, u2k−1, u0, u2k, u2k+1 by 3,3,2,2,3,3, respectively. When
k = 3, we only need to deal with C6(2; 3). Figure 1(a) shows the proper
assignment of C6(2; 3).
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Figure 1. Proper edge-colorings vertex weighting of graphs.

For C6(3; 3), suppose there is an edge-coloring 3-vertex weighting w of it. By
symmetry and without loss of generality, we may assume w(u0) = 3, w(u1) = 1,
w(u5) = 3 and w(u6)=2. By Fact 2, u2, u4, u7 cannot be assigned by 3. Hence
at least two of them are assigned the same weight. This contradicts Fact 2. So
µ′(C6(3; 3) ≥ 4. Figure 1(b) shows that µ′(C6(3; 3)) = 4.

For C6(2; 2), suppose there is an edge-coloring 3-vertex weighting w of it.
By Fact 2, w(u1) and w(u6) are distinct. Without loss of generality, we may
assume w(u1) = 1 and w(u6) = 2. By Fact 2 again, we have w(u3) = 3 = w(u5),
a contradiction. So µ′(C6(2; 2)) ≥ 4. Figure 1(c) shows that µ′(C6(2; 2)) = 4.

For C6(3; 2), suppose there is an edge-coloring 3-vertex weighting w of it.
Without loss of generality, we may assume w(u0) = 3. Suppose w(u6) = 3.
Then w(u1), w(u3) and w(u5) are distinct and cannot be 3, a contradiction.
So w(u6) ̸= 3. Without loss of generality, we may assume w(u6) = 1. By
symmetry, we may assume w(u1) = 3. Hence, w(u5) = 2 and w(u3) = 1.
So, w(u2) and w(u4) must be distinct and cannot be 1 or 3, a contradiction.
Therefore, µ′(C6(3; 2)) ≥ 4. Figure 1(d) shows that µ′(C6(3; 2)) = 4. □

Definition 2.24. A long dumbbell graph is a graph obtained from two cycles
Ca and Cb, by joining a path Pk+1 of length k for a, b ≥ 3 and k ≥ 1. Without
loss of generality, we may assume a ≥ b and

Ca = u1 · · ·uau1, Pk+1 = u1w1 · · ·wk−1v1 and Cb = v1 · · · vbv1.

This graph is denoted by D(a, b; k). When k = 1, P2 = u1v1 and D(a, b; k) is
called a dumbbell graph.
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Theorem 2.25. For a ≥ b ≥ 3 and k ≥ 1, µ′(D(a, b; k)) = 3 except that
µ′(D(3, 3; 2)) = 4.

Proof. Suppose a = b = 3. We define w(ui) = i, 1 ≤ i ≤ 3. Assume k ̸= 2.
Assign the path Pk+1 by 1,1,3,3 periodically. If w(wk−1) ̸= w(v1), reassign
wk−1 and v1 by 2. It is now easy to assign weights to the two remaining vertices
of Cb to get µ′(D(3, 3; k)) = 3. Now assume µ′(D(3, 3; 2)) = 3. By Fact 2,
w(u1), w(u2), w(u3) (respectively, w(u2), w(u3), w(w1)) are distinct. Without
loss of generality, we define w(ui) = i, 1 ≤ i ≤ 3. Hence, we must define
w(w1) = 1. By symmetry, we must have w(v1) = 1, contradicting Fact 2. Now,
define w(vi) = i+ 1. We have µ′(D(3, 3; 2)) = 4.

Suppose a ≥ 4. The weights of the vertices belong to the a-cycle are assigned
as in Proposition 2.2 starting at ua, then u1 and so on. Thus w(ua) = w(u1) = 1

and w(u2) = 2. Assign the path w1 · · ·wk−1v1 by 3,3,2,2 periodically for k ≥ 2;
let w(v1) = 3 for k = 1. For this partial assignment, we will deal with the
following cases:

(1) k ≡ 0 (mod 4), i.e., w(wk−1) = 2, w(v1) = 2. If b ≡ 0 (mod 4), then
redefine w(v1) = 1 and weights of the vertices belong to the b-cycle are
assigned as in Proposition 2.2 starting at v1 by using weights 1 and 3.
If b ≡ 1, 2 (mod 4), then redefine w(v1) = 1 and weights of the vertices
belong to the b-cycle are assigned as in Proposition 2.2 starting at v1. If
b ≡ 3 (mod 4) and b ≥ 7, then weights of the vertices belong to the b-cycle
are assigned as in Proposition 2.2 starting at v2 and ending at v1, which
has been assigned by 2. If b = 3, then define w(v2) = 1 and w(v3) = 3.

(2) k ≡ 3 (mod 4), i.e., w(wk−1) = 3, w(v1) = 2. If b ≥ 4, then weights of the
vertices belong to the b-cycle are assigned as in Proposition 2.2 starting at
vb−1 and ending at vb−2. So, w(vb) = 1, w(v1) = 2, w(v2) = 2.

Suppose b = 3. If k = 3, then redefine w(w2) = 2. Clearly, it is easy
to assign weights to Cb. If k ≥ 7, then redefine w(w2) = 1 and w(v1) = 1.
Clearly, it is easy to assign weights to Cb.

(3) k ≡ 2 (mod 4), i.e., w(wk−1) = 3, w(v1) = 3. If b = 3, then it is easy to
assign the weights to Cb. Suppose b ≥ 4. Redefine w(v1) = 1. Assign the
vertices of Cb as in Proposition 2.2 starting at vb and ending at vb−1.

(4) k ≡ 1 (mod 4). Suppose k ≥ 5, i.e., w(v1) = 3 and w(wk−1) = 2. If b = 3,
then redefine w(wk−1) = 1 = w(v1). It is easy to have a proper assignment.
Suppose b ≥ 4. If b ≡ 0 (mod 4), then weights of the vertices belong to the
b-cycle are assigned as in Proposition 2.2 starting at v1 by using weights
3 and 1. If b ≡ 1, 2 (mod 4), then redefine w(v1) = 1 and weights of the
vertices belong to the b-cycle are assigned as in Proposition 2.2 starting
at v1. If b ≡ 3 (mod 4), then weights of the vertices belong to the b-cycle
are assigned as in Proposition 2.2 starting at v1, but change the original
weights 1,2,3 to 3,1,2 accordingly.
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Suppose k = 1. If b ≡ 0 (mod 4), assign the vertices of Cb as in Propo-
sition 2.2 but change the original weights 1,2 to 3,2 accordingly. If b ≡ 1, 2

(mod 4), assign the vertices of Cb as in Proposition 2.2 but change the
original weights 1,2,3 to 3,1,2 accordingly. Now consider b ≡ 3 (mod 4).
If b = 3, assign v2, v3 by 2, 1 respectively. If b ≥ 7, then weights of the
vertices belong to the b-cycle are assigned as in Proposition 2.2 starting at
v1, but change the original weights 1,2,3 to 3,2,1 accordingly.

□

Example 2.26. The following figures are illustration of some cases in the proof
of the above theorem when k ≡ 1 (mod 4).
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Figure 2. A proper edge-coloring 3-vertex weighting of D(7, 7; 5)
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Figure 3. A proper edge-coloring 3-vertex weighting of D(7, 7; 1)
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(a) D(5, 4; 1) (b) D(5, 5; 1)

Figure 4. Proper edge-colorings 3-vertex weighting of some
dumbbell graphs.
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3. Remark

We may generalize the weights from positive integers to elements of an
abelian. We will obtain the same results by the same arguments.

We may also generalize the definition of edge-coloring vertex weighting as
follows:
Let S be a set of cardinal k. A k-vertex weighting of a graph G is a mapping
w : V (G) → S. This mapping is called edge-coloring k-vertex weighting if the
weights of all neighbors of a vertex u are distinct, for each vertex u. Denote
by µ′(G) the minimum k for G to admit an edge-coloring k-vertex weighting.
Again, we will obtain the same results by the same arguments.

We end the paper with the following open problems.

Problem 3.1. Characterize all 3-regular graphs G such that µ′(G) = 3 or 4.

Problem 3.2. Find necessary and/or sufficient condition for graphs G such
that µ′(G) = ∆(G) or µ′(G) = ∆(G) + 1.
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